On privacy in decentralized systems with tokens
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 119-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-level model of a decentralized system is proposed, the level with protocols for the creation and validation of private transactions is highlighted. The main feature of ensuring the transaction privacy in decentralized systems with tokens is the need to validate the various conditions for the transaction content without access to it. Therefore, classes of non-classical (and non-standardized in the Russian Federation) cryptographic mechanisms, which are often used in decentralized systems with private transactions, are highlighted. The non-universality of the existing formal definitions of such systems is shown. Therefore, formalizing the transaction privacy property in the general case is an open problem.
Keywords: decentralized system, privacy, token, zero knowledge proof, homomorphic encryption, commitment, aggregate signature, ring signature.
@article{PDMA_2021_14_a26,
     author = {L. R. Akhmetzyanova and A. A. Babueva and S. N. Kyazhin and V. A. Popov},
     title = {On privacy in decentralized systems with tokens},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {119--125},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a26/}
}
TY  - JOUR
AU  - L. R. Akhmetzyanova
AU  - A. A. Babueva
AU  - S. N. Kyazhin
AU  - V. A. Popov
TI  - On privacy in decentralized systems with tokens
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 119
EP  - 125
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a26/
LA  - ru
ID  - PDMA_2021_14_a26
ER  - 
%0 Journal Article
%A L. R. Akhmetzyanova
%A A. A. Babueva
%A S. N. Kyazhin
%A V. A. Popov
%T On privacy in decentralized systems with tokens
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 119-125
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a26/
%G ru
%F PDMA_2021_14_a26
L. R. Akhmetzyanova; A. A. Babueva; S. N. Kyazhin; V. A. Popov. On privacy in decentralized systems with tokens. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 119-125. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a26/

[1] Metodicheskie rekomendatsii TK 26 MR 26.4.001-2018 «Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Terminy i opredeleniya v oblasti tekhnologii tsepnoi zapisi dannykh (blokchein) i raspredelennykh reestrov», Tekhnicheskii komitet po standartizatsii «Kriptograficheskaya zaschita informatsii», M., 2018

[2] Zhang R., Xue R., Liu L., “Security and privacy on blockchain”, ACM Computing Surveys, 52:3 (2019), 51, 34 pp. | DOI | Zbl

[3] Sai A. R., Buckley J., Fitzgerald B., Le Gear A., Taxonomy of Centralization in Public Blockchain Systems: A Systematic Literature Review, 2020, arXiv: 2009.12542

[4] Nijsse J., Litchfield A., “A taxonomy of blockchain consensus methods”, Cryptography, 4:4 (2020), 32, 15 pp. | DOI

[5] Pass R., Seeman L., Shelat A., “Analysis of the blockchain protocol in asynchronous networks”, EUROCRYPT 2017, Springer, 2017, 643–673 | DOI | MR | Zbl

[6] Zcash Protocol Specification, , 2021 https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

[7] Ben Sasson E., Chiesa A., Garman C., et al., “Zerocash: Decentralized anonymous payments from bitcoin”, IEEE Symp. Security Privacy (San Jose, CA, 2014), 459–474 | Zbl

[8] CryptoNote v 2.0., , 2013 https://cryptonote.org/whitepaper.pdf

[9] Yuen T. H., Sun S.-F., Liu J. K., et al., “RingCT 3.0 for blockchain confidential transaction: Shorter size and stronger security”, LNCS, 12059, 2020, 464–483 | Zbl

[10] AZTEC Protocol, , 2018 https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf

[11] Poelstra A., Mimblewimble, , 2016 https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

[12] Fuchsbauer G., Orru M., Seurin Y., “Aggregate cash systems: a cryptographic investigation of Mimblewimble”, LNCS, 11476, 2019, 657–689 | Zbl

[13] Bunz B., Agrawal S., Zamani M., Boneh D., “Zether: Towards privacy in a smart contract world”, LNCS, 12059, 2020, 423–443 | Zbl

[14] Zhang W., Ma B., Blockchain Data Protection using Homomorphic Encryption, US Patent 2019/0253235 A1

[15] Cheng R., Zhang F., Kos J., et al., “Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts”, IEEE Europ. Symp. Security Privacy, 2019, 185–200 | Zbl

[16] Brandenburger M., Cachin C., Kapitza R., Sorniotti A., Blockchain and trusted computing: Problems, pitfalls, and a solution for Hyperledger Fabric, 2018, arXiv: 1805.08541 | Zbl

[17] Hevia A., Introduction to Provable Security, Advanced Crypto School, Florianopolis, 2013

[18] Canetti R., “Universally composable security: a new paradigm for cryptographic protocols”, 42nd IEEE Symp. Found. Comput. Sci., IEEE, 2001, 136–145 | DOI | MR

[19] Cremers C., Mauw S., Operational Semantics and Verification of Security Protocols, Springer Verlag, 2012, 174 pp. | MR | Zbl

[20] Guan Z., Wan Z., Yang Y., et al., “BlockMaze: An efficient privacy-preserving account-model blockchain based on zk-SNARKs”, IEEE Trans. Dependable Secure Comput., IEEE, 2020 https://eprint.iacr.org/2019/1354.pdf

[21] Mitani T., Otsuka A., “Confidential and auditable payments”, LNCS, 12063, 2020, 466–480 | Zbl

[22] Mezhgosudarstvennyi standart GOST 34.10-2018 «Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Protsessy formirovaniya i proverki elektronnoi tsifrovoi podpisi», Standartinform, M., 2018

[23] Moldovyan N. A., Teoreticheskii minimum i algoritmy tsifrovoi podpisi, BKhV-Peterburg, SPb., 2010, 304 pp.