Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2021_14_a25, author = {V. A. Roman'kov}, title = {An improvement of cryptographic schemes based on the conjugacy search problem}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {114--118}, publisher = {mathdoc}, number = {14}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a25/} }
TY - JOUR AU - V. A. Roman'kov TI - An improvement of cryptographic schemes based on the conjugacy search problem JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 114 EP - 118 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a25/ LA - en ID - PDMA_2021_14_a25 ER -
V. A. Roman'kov. An improvement of cryptographic schemes based on the conjugacy search problem. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 114-118. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a25/
[1] Diffie W., Hellman M. I., “New directions in cryptography”, IEEE Trans. Inform. Theory, 22 (1976), 644–654 | DOI | MR | Zbl
[2] Anshel I., Anshel M., Goldfeld D., “An algebraic method for public-key cryptography”, Math. Res. Lett., 6:3 (1999), 287–291 | DOI | MR | Zbl
[3] Ko K. H., Lee S. J., Cheon J. H., et al., “New public-key cryptosystem using braid groups”, LNCS, 1880, 2000, 166–183 | MR | Zbl
[4] Roman'kov V. A., Algebraic Cryptography, Omsk State University Publ., Omsk, 2013, 136 pp. (in Russian)
[5] Myasnikov A. G., Roman'kov V. A., “A linear decomposition attack”, Groups, Complex., Cryptol., 7:1 (2015), 81–94 | DOI | MR | Zbl
[6] Roman'kov V. A., “Cryptanalysis of some schemes applying automorphisms”, Prikladnaya Discretnaya Matematika, 2013, no. 3, 35–51 (in Russian) | DOI | Zbl
[7] Roman'kov V. A., “A nonlinear decomposition attack”, Groups, Complex., Cryptol., 8:2 (2016), 197–207 | MR | Zbl
[8] Roman'kov V. A., Essays in Algebra and Cryptology: Algebraic Cryptanalysis, Omsk State University Publ., Omsk, 2018, 207 pp.
[9] Tsaban B., “Polynomial-time solutions of computational problems in noncommutative-algebraic cryptography”, J. Cryptol., 28:3 (2015), 601–622 | DOI | MR | Zbl
[10] Ben-Zvi A., Kalka A., Tsaban B., “Cryptanalysis via algebraic span”, LNCS, 10991, 2018, 255–274 | MR | Zbl
[11] Roman'kov V. A., “An improved version of the AAG cryptographic protocol”, Groups, Complex., Cryptol., 11:1 (2019), 35–42 | DOI | MR
[12] Roman'kov V, A., “Algebraic cryptanalysis and new security enhancement”, Moscow J. Combinat. Number Theory, 9:2 (2020), 123–146 | DOI | MR | Zbl
[13] Roman'kov V. A., “An improvement of the Diffie-Hellman noncommutative protocol”, Designs, Codes, Cryptogr. (to appear)