Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2021_14_a24, author = {Y. V. Kosolapov and O. Y. Turchenko}, title = {Choosing parameters for one $\mathrm{IND}$-$\mathrm{CCA2}$ secure {McEliece} modification in the standard model}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {110--114}, publisher = {mathdoc}, number = {14}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a24/} }
TY - JOUR AU - Y. V. Kosolapov AU - O. Y. Turchenko TI - Choosing parameters for one $\mathrm{IND}$-$\mathrm{CCA2}$ secure McEliece modification in the standard model JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 110 EP - 114 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a24/ LA - en ID - PDMA_2021_14_a24 ER -
%0 Journal Article %A Y. V. Kosolapov %A O. Y. Turchenko %T Choosing parameters for one $\mathrm{IND}$-$\mathrm{CCA2}$ secure McEliece modification in the standard model %J Prikladnaya Diskretnaya Matematika. Supplement %D 2021 %P 110-114 %N 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a24/ %G en %F PDMA_2021_14_a24
Y. V. Kosolapov; O. Y. Turchenko. Choosing parameters for one $\mathrm{IND}$-$\mathrm{CCA2}$ secure McEliece modification in the standard model. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 110-114. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a24/
[1] NIST, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
[2] Classic McEliece: conservative code-based cryptography, https://classic.mceliece.org/nist/mceliece-20171129.pdf
[3] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 1978, 42–44
[4] Dottling N., Dowsley R., Quade J. M., Nascimento A. C. A., “A CCA2 secure variant of the McEliece cryptosystem”, IEEE Trans. Inform. Theory, 58:10 (2012), 6672–6680 | DOI | MR | Zbl
[5] Kosolapov Y. V., Turchenko O. Y., “Efficient $S$-repetition method for constructing an IND-CCA2 secure McEliece modification in the standard model”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 13 (2020), 80–84 | DOI
[6] Persichetti E., “On a CCA2-secure variant of McEliece in the standard model”, Provable Security, 11192 (2018), 165–181 | DOI | MR | Zbl
[7] Rosen A., Segev G., “Chosen-ciphertext security via correlated products”, Proc. 6th Theory of Cryptography Conf. (San Francisco, CA, USA, March 15–17, 2009), 419–436 | MR | Zbl
[8] Lenstra A. K., Verheul E. R., “Selecting cryptographic key sizes”, J. Cryptology, 14 (2004), 446–465 | MR
[9] Bernstein D. J., Chou T., Schwabe P., “McBits: Fast constant-time code-based cryptography”, LNCS, 8086, 2013, 250–272 | Zbl
[10] Barreto A., Misoczki R., A New One-Time Signature Scheme from Syndrome Decoding, IACR Cryptology ePrint Archive, 2010
[11] Nojima R., Imai H., Kobara K., et al., “Semantic security for the McEliece cryptosystem without random oracles”, Designs, Codes, Cryptogr., 49 (2008), 289–305 | DOI | MR | Zbl
[12] A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf