On ARX-like ciphers based on different codings of $2$-groups with a cyclic subgroup of index~$2$
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 100-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A large number of block ciphers are based on easily and efficiently implemented group operations on $2$-groups such as the additive group of the residue ring $\mathbb{Z}_{2^m}$, the additive group of the vector space $V_{m}(2)$ over $\mathrm{GF(2)}$ and their combination. ARX-like ciphers use the operations of cyclic shifts and additions in $\mathbb{Z}_{2^m}$, $V_{m}(2)$. For developing techniques of building and analysing new symmetric-key block ciphers, we study group properties of $m$-bit ARX-like ciphers based on regular groups generated by $(0,1,\ldots,2^m-1)$ and different codings of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$. There are exactly four isomorphism classes of the nonabelian $2$-groups such as the dihedral group $D_{2^m}$, the generalized quaternion group $Q_{2^m}$, the quasidihedral group $SD_{2^m}$ and the modular maximal-cyclic group $M_{2^m}$. For such groups, we get imprimitivity criterions and give conditions on codings in order that the group of the ARX-like cipher should be equal to the symmetric group $S_{2^m}$. We also provide examples of three natural codings and their group properties.
Keywords: ARX-ciphers, primitive group, dihedral group, generalized quaternion group, quasidihedral group.
Mots-clés : modular maximal-cyclic group
@article{PDMA_2021_14_a22,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {On {ARX-like} ciphers based on different codings of $2$-groups with a cyclic subgroup of index~$2$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {100--104},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a22/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - On ARX-like ciphers based on different codings of $2$-groups with a cyclic subgroup of index~$2$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 100
EP  - 104
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a22/
LA  - ru
ID  - PDMA_2021_14_a22
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T On ARX-like ciphers based on different codings of $2$-groups with a cyclic subgroup of index~$2$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 100-104
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a22/
%G ru
%F PDMA_2021_14_a22
B. A. Pogorelov; M. A. Pudovkina. On ARX-like ciphers based on different codings of $2$-groups with a cyclic subgroup of index~$2$. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 100-104. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a22/

[1] Wheeler D. J., Needham R. M., “TEA, a Tiny Encryption Algorithm”, LNCS, 1008, 1995, 363–366 | Zbl

[2] Rivest R. L., “The RC5 encryption algorithm”, LNCS, 1008, 1995, 86–96 | Zbl

[3] Rivest R. L., Robshaw M. J. B., Sidney R., Yin Y. L., The RC6 Block Cipher. V1.1, AES Proposal, , 1998 http://www.rsa.com/rsalabs/aes

[4] Beaulieu R., Shors D., Smith J., et al., The SIMON and SPECK Families of Lightweight Block Ciphers, Cryptology ePrint Archive, , 2013 https://eprint.iacr.org/2013/404

[5] Pogorelov B. A., Pudovkina M. A., “Podstanovochnye predstavleniya neabelevykh 2-grupp s tsiklicheskoi podgruppoi indeksa 2”, Matem. vopr. kriptogr., 12 (2021) (to appear)

[6] Pogorelov B. A., Pudovkina M. A., “Variatsii ortomorfizmov i psevdoadamarovykh preobrazovanii na neabelevoi gruppe”, Prikladnaya diskretnaya matematika. Prilozhenie, 2019, no. 12, 24–27

[7] Pogorelov B. A., Pudovkina M. A., “O klasse stepennykh kusochno-affinnykh podstanovok na neabelevoi gruppe poryadka $2^m$, obladayuschei tsiklicheskoi podgruppoi indeksa dva”, Prikladnaya diskretnaya matematika. Prilozhenie, 2019, no. 12, 27–29

[8] Pogorelov B. A., Pudovkina M. A., “Neabelevost gruppy nalozheniya klyucha i svoistvo ${ \otimes _{\bf{W}}}$-markovosti algoritmov blochnogo shifrovaniya”, Matem. vopr. kriptogr., 11:4 (2020), 3–22

[9] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.

[10] Dixon J. D., Mortimer B., Permutation Groups, Springer Verlag, Berlin, 1996, 346 pp. | MR | Zbl

[11] Grossman E., Group Theoretic Remark on Cryptographic System Based on Two Types of Additions, Math. Sc. Dept. IBM Watson res. Center, Yorktown Heights, 1974

[12] Pogorelov B. A., Pudovkina M. A., “Nadgruppy additivnykh regulyarnykh grupp poryadka $2^m$ koltsa vychetov i vektornogo prostranstva”, Diskretnaya matematika, 27:3 (2015), 74–94

[13] Babash A. V., Shankin G. P., Kriptografiya, SOLON-R, M., 2002, 512 pp.

[14] Paterson K. G., “Imprimitive permutation groups and trapdoors in iterated block ciphers”, LNCS, 1636, 1999, 201–214 | Zbl

[15] Pogorelov B. A., “Primitivnye gruppy podstanovok, soderzhaschie $2^m$-tsikl”, Algebra i logika, 19:2 (1980), 236–247 | MR