Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2021_14_a21, author = {D. A. Nabokov}, title = {Post-quantum lattice-based e-voting for multiple candidates}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {95--100}, publisher = {mathdoc}, number = {14}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a21/} }
D. A. Nabokov. Post-quantum lattice-based e-voting for multiple candidates. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 95-100. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a21/
[1] Del Pino R., Lyubashevsky V., Neven G., Seiler G., “Practical quantum-safe voting from lattices”, Proc. ACM SIGSAC Conf. Comput. Commun. Security, 2017, 1565–1581
[2] Langlois A., Stehlé D., “Worst-case to average-case reductions for module lattices”, Des. Codes Cryptogr., 75 (2015), 565–599 | DOI | MR | Zbl
[3] Lyubashevsky V. and Seiler G., “Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs”, LNCS, 10820, 2018, 204–224 | MR | Zbl
[4] Baum C., Damgård I., Lyubashevsky V., et al., “More efficient commitments from structured lattice assumptions”, LNCS, 11035, 2018, 368–385 | MR | Zbl
[5] Baum C., Bootle J., Cerulli A., et al., “Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits”, LNCS, 10992, 2018, 669–699 | MR | Zbl
[6] Attema T., Lyubashevsky V., and Seiler G., “Practical product proofs for lattice commitments”, LNCS, 12171, 2020, 470–499 | MR
[7] Esgin M., Nguyen N., Seiler G., “Practical exact proofs from lattices: New techniques to exploit fully-splitting rings”, Adv. Cryptology — ASIACRYPT 2020, 259–288