Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2021_14_a19, author = {A. V. Kutsenko and N. D. Atutova and D. A. Zyubina and E. A. Maro and S. D. Filippov}, title = {Algebraic cryptanalysis of round-reduced lightweight ciphers {\textsc{Simon}} and {\textsc{Speck}}}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {84--91}, publisher = {mathdoc}, number = {14}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a19/} }
TY - JOUR AU - A. V. Kutsenko AU - N. D. Atutova AU - D. A. Zyubina AU - E. A. Maro AU - S. D. Filippov TI - Algebraic cryptanalysis of round-reduced lightweight ciphers \textsc{Simon} and \textsc{Speck} JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 84 EP - 91 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a19/ LA - ru ID - PDMA_2021_14_a19 ER -
%0 Journal Article %A A. V. Kutsenko %A N. D. Atutova %A D. A. Zyubina %A E. A. Maro %A S. D. Filippov %T Algebraic cryptanalysis of round-reduced lightweight ciphers \textsc{Simon} and \textsc{Speck} %J Prikladnaya Diskretnaya Matematika. Supplement %D 2021 %P 84-91 %N 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a19/ %G ru %F PDMA_2021_14_a19
A. V. Kutsenko; N. D. Atutova; D. A. Zyubina; E. A. Maro; S. D. Filippov. Algebraic cryptanalysis of round-reduced lightweight ciphers \textsc{Simon} and \textsc{Speck}. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 84-91. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a19/
[1] Raddum H., “Algebraic analysis of the Simon block cipher family”, LNCS, 9230, 2015, 157–169 | MR | Zbl
[2] Courtois N., Mourouzis T., Song G., et al., “Combined algebraic and truncated differential cryptanalysis on reduced-round Simon”, 11th Intern. Conf. Security Cryptogr., 2014, 399–404
[3] Beaulieu R., Shors D., Smith J., et al., The Simon and Speck Families of Lightweight Block Ciphers, Cryptology ePrint Archive, Report 2013/404, 2013
[4] Courtois N., Shamir A., Patarin J., Klimov A., “Efficient algorithms for solving overdefined systems of multivariate polynomial equations”, LNCS, 1807, 2000, 293–407 | MR
[5] Courtois N., The Security of Cryptographic Primitives based on Multivariate Algebraic Problems, Ph.D. Thesis, Paris, 2001
[6] Bard G., Algebraic Cryptanalysis, Springer, 2009, 356 pp. | MR | Zbl
[7] Courtois N., Bard G. V., “Algebraic cryptanalysis of the data encryption standard”, LNCS, 4887, 2007, 152–169 | MR | Zbl
[8] Albrecht M., Brickenstein M., Soos M., An ANF to CNF Converter using a Dense/Sparse Strategy, https://doc.sagemath.org/html/en/reference/sat/sage/sat/converters/polybori.html
[9] Soos M., “The CryptoMiniSat 5 set of solvers at SAT competition 2016”, Proc. SAT Competition (Helsinki, 2016), 28
[10] Biere A., “CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT Competition 2017”, Proc. SAT Competition (Helsinki, 2017), 14–15
[11] Raddum H., Semaev I., New Technique for Solving Sparse Equation Systems, IACR Cryptology ePrint Archive, No 2006/475, 2006
[12] Biere A., “New technique for solving sparse equation systems”, Des. Codes Cryptogr., 49:1–3 (2008), 47–60 | MR