On derivatives of Boolean bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 57-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bent function can be defined as a Boolean function $f(x)$ in $n$ variables ($n$ is even) such that for any nonzero vector $y$ its derivative $D_yf(x)=f(x)\oplus f(x\oplus y)$ is balanced, that is, it takes values $0$ and $1$ equally often. Whether every balanced function is a derivative of some bent function or not is an open problem. In this paper, special case of this problem is studied. It is proven that every non-constant affine function in $n$ variables, $n\geqslant4$, $n$ is even, is a derivative of $(2^{n-1}-1)|\mathcal{B}_{n-2}|^2$ bent functions, where $|\mathcal{B}_{n-2}|$ is the number of bent functions in $n-2$ variables. New iterative lower bounds for the number of bent functions are presented.
Keywords: Boolean functions, bent functions, derivatives of bent function, lower bounds for the number of bent functions.
@article{PDMA_2021_14_a11,
     author = {A. S. Shaporenko},
     title = {On derivatives of {Boolean} bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {57--58},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a11/}
}
TY  - JOUR
AU  - A. S. Shaporenko
TI  - On derivatives of Boolean bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 57
EP  - 58
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a11/
LA  - ru
ID  - PDMA_2021_14_a11
ER  - 
%0 Journal Article
%A A. S. Shaporenko
%T On derivatives of Boolean bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 57-58
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a11/
%G ru
%F PDMA_2021_14_a11
A. S. Shaporenko. On derivatives of Boolean bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 57-58. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a11/

[1] Rothaus O. S., “On bent functions”, J. Combinat. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Matsui M., “Linear cryptanalysis method for DES cipher”, LNCS, 765, 1994, 386–397 | Zbl

[3] Adams C., “Constructing symmetric ciphers using the CAST design procedure”, Design, Codes, Cryptogr., 12:3 (1997), 283–316 | DOI | MR | Zbl

[4] Hell M., Johansson T., Maximov A., Meier W., “A stream cipher proposal: Grain-128”, IEEE Intern. Symp. Inform. Theory, 2006, 1614–1618

[5] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press, 2015 | MR | Zbl

[6] Tokareva N. N., “O mnozhestve proizvodnykh bulevoi bent-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 35

[7] Tokareva N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. Math. Commun., 5:4 (2011), 609–621 | DOI | MR | Zbl

[8] Canteaut A., Charpin P., “Decomposing bent functions”, IEEE Trans. Inform. Theory, 49:8 (2003), 2004–2019 | DOI | MR | Zbl