On construction of maximal genus $3$ hyperelliptic curves
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 24-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe two methods of contructing genus $3$ maximal hyperelliptic curves of type $y^2=x^7+ax^4+bx$ over a finite field. We consider the case when $b$ is a cubic residue in this field. In this case the Jacobian of the curve decomposes into three elliptic curves. The first method is based on finding a pair of supersingular elliptic curves over a prime field. One of the curves in the pair is chosen to have $j$-invariant equal to $0$ or $1728$. The $j$-invariant of the second elliptic curve can be computed from the $j$-invariant of the first curve using an explicit formula. After finding the pair, the maximal genus $3$ curve is constructed over a suitable extension of the finite field. This method does not allow us to enumerate all maximal curves, but gives a very efficient algorithm for the family of maximal curves. The second method is based on factorization of the Legendre polynomials, which are Hasse invariants of the elliptic curves in the Jacobian decomposition. Using this method, we construct all possible maximal hyperelliptic curves over $\mathbb{F}_{p^2}$ for $a \neq 0, b = 1$ and $p \leq 7151$.
Mots-clés : maximal hyperelliptic curve
Keywords: supersingular elliptic curve, characteristic polynomial.
@article{PDMA_2021_14_a1,
     author = {Yu. F. Boltnev and S. A. Novoselov and V. A. Osipov},
     title = {On construction of maximal genus $3$ hyperelliptic curves},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {24--30},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a1/}
}
TY  - JOUR
AU  - Yu. F. Boltnev
AU  - S. A. Novoselov
AU  - V. A. Osipov
TI  - On construction of maximal genus $3$ hyperelliptic curves
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 24
EP  - 30
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a1/
LA  - ru
ID  - PDMA_2021_14_a1
ER  - 
%0 Journal Article
%A Yu. F. Boltnev
%A S. A. Novoselov
%A V. A. Osipov
%T On construction of maximal genus $3$ hyperelliptic curves
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 24-30
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a1/
%G ru
%F PDMA_2021_14_a1
Yu. F. Boltnev; S. A. Novoselov; V. A. Osipov. On construction of maximal genus $3$ hyperelliptic curves. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 24-30. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a1/

[1] Novoselov S. A., Boltnev Y. F., “Characteristic polynomials of the curve $y^2=x^{2g+1}+ax^{g+1}+bx$ over finite fields”, Prikladnaya diskretnaya matematika. Prilozhenie, 2019, no. 12, 44–46

[2] Cohen H., Frey G., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall/CRC, 2006 | Zbl

[3] Blake I. F., Seroussi G., Smart N. P., Elliptic Curves in Cryptography, Cambridge University Press, 1999 | MR | Zbl

[4] Menezes A., Elliptic curve public key cryptosystem, Kluwer Academic Publ., 1993 | MR

[5] Tafazolian S., “A family of maximal hyperelliptic curves”, J. Pure Appl. Algebra, 216:7 (2012), 1528–1532 | DOI | MR | Zbl

[6] Novoselov S. A., “Hyperelliptic curves, Cartier — Manin matrices and Legendre polynomials”, Prikladnaya diskretnaya matematika, 2017, no. 37, 20–31 | MR | Zbl

[7] Von zur Gathen J., Gerhard J., Modern Computer Algebra, Cambridge University Press, 2013 | MR | Zbl

[8] Kodama T., Top J., Washio T., “Maximal hyperelliptic curves of genus three”, Finite Fields Their Appl., 15:3 (2009), 392–403 | DOI | MR | Zbl