Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2021_14_a1, author = {Yu. F. Boltnev and S. A. Novoselov and V. A. Osipov}, title = {On construction of maximal genus $3$ hyperelliptic curves}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {24--30}, publisher = {mathdoc}, number = {14}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a1/} }
TY - JOUR AU - Yu. F. Boltnev AU - S. A. Novoselov AU - V. A. Osipov TI - On construction of maximal genus $3$ hyperelliptic curves JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 24 EP - 30 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a1/ LA - ru ID - PDMA_2021_14_a1 ER -
Yu. F. Boltnev; S. A. Novoselov; V. A. Osipov. On construction of maximal genus $3$ hyperelliptic curves. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 24-30. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a1/
[1] Novoselov S. A., Boltnev Y. F., “Characteristic polynomials of the curve $y^2=x^{2g+1}+ax^{g+1}+bx$ over finite fields”, Prikladnaya diskretnaya matematika. Prilozhenie, 2019, no. 12, 44–46
[2] Cohen H., Frey G., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall/CRC, 2006 | Zbl
[3] Blake I. F., Seroussi G., Smart N. P., Elliptic Curves in Cryptography, Cambridge University Press, 1999 | MR | Zbl
[4] Menezes A., Elliptic curve public key cryptosystem, Kluwer Academic Publ., 1993 | MR
[5] Tafazolian S., “A family of maximal hyperelliptic curves”, J. Pure Appl. Algebra, 216:7 (2012), 1528–1532 | DOI | MR | Zbl
[6] Novoselov S. A., “Hyperelliptic curves, Cartier — Manin matrices and Legendre polynomials”, Prikladnaya diskretnaya matematika, 2017, no. 37, 20–31 | MR | Zbl
[7] Von zur Gathen J., Gerhard J., Modern Computer Algebra, Cambridge University Press, 2013 | MR | Zbl
[8] Kodama T., Top J., Washio T., “Maximal hyperelliptic curves of genus three”, Finite Fields Their Appl., 15:3 (2009), 392–403 | DOI | MR | Zbl