Connections between quaternary and component Boolean bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 35-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is about quaternary bent functions. Function $g:\mathbb{Z}_4^n\rightarrow\mathbb{Z}_4$ is called quaternary in $n$ variables. It was proven that bentness of a quaternary function $g(x+2y)=a(x,y)+2b(x,y)$ doesn't directly depend on the bentness of Boolean functions $b$ and $a\oplus b$. The number of quaternary bent functions in one and two variables is obtained with a description of properties of Boolean functions $b$ and $a\oplus b$. Two simple constructions of quaternary bent functions in any number of variables are presented. The first one is given by the formula $g(x_1+2x_{n+1},\ldots,x_n+2x_{2n})=\sum\limits_{i=1}^n2x_ix_{i+n} + cx_j$, $c\in\mathbb{Z}_2$ and $j\in\{1,\ldots,n\}$. The second construction allows one to get a bent function $g'(x+2y)=3a(x,y) + 2b(x,y)$, where $g(x+2y)=a(x,y) + 2b(x,y)$ is bent.
Keywords: quaternary functions, Boolean functions, bent function.
@article{PDMA_2020_13_a9,
     author = {A. S. Shaporenko},
     title = {Connections between quaternary and component {Boolean} bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {35--37},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a9/}
}
TY  - JOUR
AU  - A. S. Shaporenko
TI  - Connections between quaternary and component Boolean bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 35
EP  - 37
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a9/
LA  - ru
ID  - PDMA_2020_13_a9
ER  - 
%0 Journal Article
%A A. S. Shaporenko
%T Connections between quaternary and component Boolean bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 35-37
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a9/
%G ru
%F PDMA_2020_13_a9
A. S. Shaporenko. Connections between quaternary and component Boolean bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 35-37. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a9/

[1] Matsui M., “Linear cryptanalysis method for DES cipher”, Eurocrypt'1993, LNCS, 765, 1994, 386–397 | Zbl

[2] Adams C., “Constructing symmetric ciphers using the CAST design procedure”, Design, Codes, and Cryptography, 12:3 (1997), 283–316 | DOI | MR | Zbl

[3] Hell M., Johansson T., Maximov A., Meier W., “A stream cipher proposal: Grain-128”, IEEE Intern. Symp. Inform. Theory (Seattle, WA, 2006), 1614–1618

[4] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press, Elsevier, 2015, 230 pp. | MR | Zbl

[5] Kumar P. V., Scholtz R. A., Welch L. R., “Generalized bent functions and their properties”, J. Combin. Theory, 40:1 (1985), 90–107 | DOI | MR | Zbl

[6] Solé P., Tokareva N., Connections Between Quaternary and Binary Bent Functions, Cryptology ePrint Archive, Report 2009/544, http://eprint.iacr.org/

[7] Solé P., Tokareva N., “On quaternary and binary bent functions”, Prikladnaya diskretnaya matematika. Prilozhenie, 2009, no. 1, 16–18 | MR | Zbl