An estimation of the nonlinearity of balanced Boolean functions generated by generalized Dobbertin's construction
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 33-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Dobbertin’s construction for highly nonlinear balanced Boolean functions is proposed. The Walsh — Hadamard spectrum is studied and estimates of the spectral radius of the proposed functions are obtained. An exact upper bound for the spectral radius (lower bound for nonlinearity) is proved, and a method for constructing a balanced function $\Theta$ in $2n$ variables using a balanced $\theta$ in $n-k$ variables with spectral radius $R_\Theta = 2^n + 2^{k} R_\theta $ is proposed. Here, $ R_\Theta $ and $ R_\theta $ are the spectral radii of $ \Theta $ and $ \theta $ respectively.
Keywords: boolean functions, bent functions, balancedness, nonlinearity, spectral radius.
@article{PDMA_2020_13_a8,
     author = {I. A. Sutormin},
     title = {An estimation of the nonlinearity of balanced {Boolean} functions generated by generalized {Dobbertin's} construction},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {33--35},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a8/}
}
TY  - JOUR
AU  - I. A. Sutormin
TI  - An estimation of the nonlinearity of balanced Boolean functions generated by generalized Dobbertin's construction
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 33
EP  - 35
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a8/
LA  - ru
ID  - PDMA_2020_13_a8
ER  - 
%0 Journal Article
%A I. A. Sutormin
%T An estimation of the nonlinearity of balanced Boolean functions generated by generalized Dobbertin's construction
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 33-35
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a8/
%G ru
%F PDMA_2020_13_a8
I. A. Sutormin. An estimation of the nonlinearity of balanced Boolean functions generated by generalized Dobbertin's construction. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 33-35. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a8/

[1] Rothaus O., “On “bent” functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, 2-e izd., MTsNMO, M., 2012, 584 pp.

[3] Tokareva N. N., Bent Functions. Results and Applications to Cryptography, Acad. Press. Elsevier, 2015 | MR | Zbl

[4] Dobbertin H., “Construction of bent functions and balanced Boolean functions with high nonlinearity”, LNCS, 1008, 1994, 61–74

[5] Kolomeec N., “On properties of a bent function secondary construction”, Proc. BFA'2020 https://boolean.w.uib.no/bfa-2020 | Zbl

[6] Kolomeets N. A., “O nekotorykh svoistvakh konstruktsii bent-funktsii s pomoschyu podprostranstv proizvolnoi razmernosti”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 41–43

[7] Carlet C., “Two new classes of bent functions”, LNCS, 765, 1994, 77–101 | MR | Zbl