Cryptographic properties of some vectorial Boolean functions compositions
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 27-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three classes of vectorial Boolean functions are considered such that each of their coordinate functions essentially depends on a given number of variables. The experimental results for the cryptographic properties (algebraic degree, algebraic immunity, nonlinearity, differential uniformity) of compositions of functions from these classes are presented.
Keywords: vectorial Boolean functions, nonlinearity, algebraic immunity, differential uniformity.
@article{PDMA_2020_13_a5,
     author = {E. S. Lipatova},
     title = {Cryptographic properties of some vectorial {Boolean} functions compositions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {27--29},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a5/}
}
TY  - JOUR
AU  - E. S. Lipatova
TI  - Cryptographic properties of some vectorial Boolean functions compositions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 27
EP  - 29
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a5/
LA  - ru
ID  - PDMA_2020_13_a5
ER  - 
%0 Journal Article
%A E. S. Lipatova
%T Cryptographic properties of some vectorial Boolean functions compositions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 27-29
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a5/
%G ru
%F PDMA_2020_13_a5
E. S. Lipatova. Cryptographic properties of some vectorial Boolean functions compositions. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 27-29. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a5/

[1] Pankratova I. A., “Construction of invertible vectorial Boolean functions with coordinates depending on given number of variables”, Informatsionnye sistemy i tekhnologii, Materialy Mezhdunar. nauch. kongressa po informatike (Respublika Belarus, Minsk, 24–27 okt. 2016), BGU, Minsk, 2016, 519–521

[2] Agibalov G. P., “Substitution block ciphers with functional keys”, Prikladnaya diskretnaya matematika, 2017, no. 38, 57–65 | MR

[3] Pankratova I. A., “Ob obratimosti vektornykh bulevykh funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 35–37

[4] Carlet C., Vectorial Boolean Functions for Cryptography, Cambridge University Press, Cambridge, 2010, 93 pp. | Zbl

[5] Canteaut A., Lecture Notes on Cryptographic Boolean Functions, Inria, Paris, 2016, 48 pp.

[6] Nyberg K., “Differentially uniform mappings for cryptography”, LNCS, 765, 1994, 55–64 | MR | Zbl

[7] Kiseleva N. M., Lipatova E. S., Pankratova I. A., Trifonova E. E., “Algoritmy vychisleniya kriptograficheskikh kharakteristik vektornykh bulevykh funktsii”, Prikladnaya diskretnaya matematika, 2019, no. 46, 78–87

[8] Knut D., Iskusstvo programmirovaniya, v. 2, Poluchislennye algoritmy, Vilyams, M., 2007, 832 pp.