Cryptographic properties of some vectorial Boolean functions compositions
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 27-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Three classes of vectorial Boolean functions are considered such that each of their coordinate functions essentially depends on a given number of variables. The experimental results for the cryptographic properties (algebraic degree, algebraic immunity, nonlinearity, differential uniformity) of compositions of functions from these classes are presented.
Keywords: vectorial Boolean functions, nonlinearity, algebraic immunity, differential uniformity.
@article{PDMA_2020_13_a5,
     author = {E. S. Lipatova},
     title = {Cryptographic properties of some vectorial {Boolean} functions compositions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {27--29},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a5/}
}
TY  - JOUR
AU  - E. S. Lipatova
TI  - Cryptographic properties of some vectorial Boolean functions compositions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 27
EP  - 29
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a5/
LA  - ru
ID  - PDMA_2020_13_a5
ER  - 
%0 Journal Article
%A E. S. Lipatova
%T Cryptographic properties of some vectorial Boolean functions compositions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 27-29
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a5/
%G ru
%F PDMA_2020_13_a5
E. S. Lipatova. Cryptographic properties of some vectorial Boolean functions compositions. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 27-29. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a5/