On metrical properties of the set of self-dual bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 21-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every bent function $f$ its dual bent function $\widetilde{f}$ is uniquely defined. If $\tilde{f}=f$ then $f$ is called self-dual bent and it is called anti-self-dual bent if $\tilde{f}=f\oplus 1$. In this work we give a review of metrical properties of the set of self-dual bent functions. We give a complete Hamming distance spectrum between self-dual Maiorana — McFarland bent functions. The set of Boolean functions which are maximally distant from the set of self-dual bent functions is discussed. We give a characterization of automorphim groups of the sets of self-dual and anti-self-dual bent functions in $n$ variables as well as the description of isometric mappings that define bijections between the sets of self-dual and anti-self dual bent functions. The set of isometric mappings which preserve the Rayleigh quotient of a Boolean function is given. As a corollary all isometric mappings which preserve bentness and the Hamming distance between bent function and its dual are given.
Keywords: Boolean function, self-dual bent function, Hamming distance, isometric mapping, metrical regularity, Rayleigh quotient of Sylvester Hadamard matrix.
Mots-clés : automorphism group
@article{PDMA_2020_13_a4,
     author = {A. V. Kutsenko},
     title = {On metrical properties of the set of self-dual bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {21--27},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a4/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - On metrical properties of the set of self-dual bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 21
EP  - 27
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a4/
LA  - ru
ID  - PDMA_2020_13_a4
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T On metrical properties of the set of self-dual bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 21-27
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a4/
%G ru
%F PDMA_2020_13_a4
A. V. Kutsenko. On metrical properties of the set of self-dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 21-27. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a4/

[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Hou X.-D., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63:2 (2012), 183–198 | DOI | MR | Zbl

[3] Carlet C., Danielson L. E., Parker M. G., Solé P., “Self-dual bent functions”, Int. J. Inform. Coding Theory, 1 (2010), 384–399 | DOI | MR | Zbl

[4] Feulner T., Sok L., Solé P., Wassermann A., “Towards the classification of self-dual bent functions in eight variables”, Des. Codes Cryptogr., 68:1 (2013), 395–406 | DOI | MR | Zbl

[5] Hyun J. Y., Lee H., Lee Y., “MacWilliams duality and Gleason-type theorem on self-dual bent functions”, Des. Codes Cryptogr., 63:3 (2012), 295–304 | DOI | MR | Zbl

[6] Luo G., Cao X., Mesnager S., “Several new classes of self-dual bent functions derived from involutions”, Cryptogr. Commun., 11:6 (2019), 1261–1273 | DOI | MR | Zbl

[7] Mesnager S., “Several new infinite families of bent functions and their duals”, IEEE Trans. Inf. Theory, 60:7 (2014), 4397–4407 | DOI | MR | Zbl

[8] Rifà J., Zinoviev V. A., On binary quadratic symmetric bent and almost bent functions, 2019, arXiv: 1211.5257v3

[9] Sok L., Shi M., Solé P., “Classification and Construction of quaternary self-dual bent functions”, Cryptogr. Commun., 10:2 (2018), 277–289 | DOI | MR | Zbl

[10] Janusz G. J., “Parametrization of self-dual codes by orthogonal matrices”, Finite Fields Appl., 13:3 (2007), 450–491 | DOI | MR | Zbl

[11] Kutsenko A. V., “The Hamming distance spectrum between self-dual Maiorana — McFarland bent functions”, J. Appl. Industr. Math., 12:1 (2018), 112–125 | DOI | MR | Zbl

[12] Kutsenko A., “Metrical properties of self-dual bent functions”, Des. Codes Cryptogr., 88:1 (2020), 201–222 | DOI | MR | Zbl

[13] Kutsenko A., “The group of automorphisms of the set of self-dual bent functions”, Cryptogr. Commun., 2020 | MR

[14] Kutsenko A. V., “O mnozhestve rasstoyanii Khemminga mezhdu samodualnymi bent-funktsiyami”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 29–30

[15] Kutsenko A. V., “O nekotorykh svoistvakh samodualnykh bent-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 44–46

[16] Kutsenko A. V., “Izometrichnye otobrazheniya mnozhestva vsekh bulevykh funktsii v sebya, sokhranyayuschie samodualnost i otnoshenie Releya”, Prikladnaya diskretnaya matematika. Prilozhenie, 2019, no. 12, 55–58

[17] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl

[18] MacWilliams F. J., Sloane N. J. A., The Theory of Error-Correcting Codes, North-Holland, Amsterdam–New York–Oxford, 1983, 782 pp. | MR

[19] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4, 5–20

[20] Oblaukhov A. K., “O metricheskom dopolnenii podprostranstv buleva kuba”, Diskretnyi analiz i issledovanie operatsii, 23 (2016), 93–106 | MR | Zbl

[21] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press, Elsevier, 2015, 230 pp. | MR | Zbl

[22] Tokareva N., “Duality between bent functions and affine functions”, Discrete Math., 312:3 (2012), 666–670 | DOI | MR | Zbl

[23] Markov A. A., “O preobrazovaniyakh, ne rasprostranyayuschikh iskazheniya”, Izbrannye trudy, v. II, Teoriya algorifmov i konstruktivnaya matematika, matematicheskaya logika, informatika i smezhnye voprosy, MTsNMO, M., 2003, 70–93

[24] Tokareva N. N., “The group of automorphisms of the set of bent functions”, Discrete Math. Appl., 20:5 (2010), 655–664 | MR | Zbl

[25] Danielsen L. E., Parker M. G., Solé P., “The Rayleigh quotient of bent functions”, LNCS, 5921, 2009, 418–432 | MR | Zbl