Mots-clés : Diophantine equations.
@article{PDMA_2020_13_a32,
author = {A. N. Rybalov},
title = {On generic complexity of the problem to represent natural numbers by sum of two squares},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {111--113},
year = {2020},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a32/}
}
A. N. Rybalov. On generic complexity of the problem to represent natural numbers by sum of two squares. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 111-113. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a32/
[1] Dickson L. E., History of the Theory of Numbers, v. II, Dover Publications, N.Y., 2005, 803 pp. | MR
[2] Senderov V., Spivak A., “Summy kvadratov i tselye gaussovy chisla”, Kvant, 1999, no. 3, 14–22
[3] Adleman L. M., McCurley K. S., “Open problems in number theoretic complexity, II”, Proc. First Intern. Symp. Algorithmic Number Theory (N.Y., USA, May 6–9, 1994), 291–322 | MR | Zbl
[4] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[5] Impagliazzo R., Wigderson A., “P $=$ BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC., ACM, El Paso, 1997, 220–229 | MR