On the continuation to bent functions and upper bounds on their number
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 18-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Boolean bent function $f$ of $n$ variables is a continuation of a Boolean function $g$ of $k$ variables if $g$ is a restriction of $f$ to a fixed affine plane of dimension $k$. We prove that a continuation always exists if $k\leq n/2$. We obtain an upper bound for the number of continuations. The bound is strengthened in the case $k=n-1$, when $g$ is a near-bent function. As a result, we improve the known upper bounds for the number of bent functions. More precisely, we show that for even $n\geq 6$ there are no more than $$ c_n 2^{2^{n-2}-n/2+5/2} \left(\frac{B(n/2,n-1)-B(n/2-1,n-1)}{2^{2^{n/2}-n/2-1}} +B(n/2-1,n-1)\right) $$ bent functions of $n$ variables. Here $c_n=\exp(-1/2+23/(18\cdot 2^{n-2}))/\sqrt{\pi}$ and $B(d,n)=2^{\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{d}}$.
Keywords: bent function, number of bent functions, near-bent function, affine plane.
@article{PDMA_2020_13_a3,
     author = {S. V. Agievich},
     title = {On the continuation to bent functions and upper bounds on their number},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {18--21},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a3/}
}
TY  - JOUR
AU  - S. V. Agievich
TI  - On the continuation to bent functions and upper bounds on their number
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 18
EP  - 21
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a3/
LA  - ru
ID  - PDMA_2020_13_a3
ER  - 
%0 Journal Article
%A S. V. Agievich
%T On the continuation to bent functions and upper bounds on their number
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 18-21
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a3/
%G ru
%F PDMA_2020_13_a3
S. V. Agievich. On the continuation to bent functions and upper bounds on their number. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 18-21. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a3/

[1] Tokareva N., Bent Functions: Results and Applications to Cryptography, Academic Press, London, UK–San Diego, CA, USA, 2015 | MR | Zbl

[2] Carlet C., Klapper A., “Upper bounds on the numbers of resilient functions and of bent functions”, Proc. 23rd Symp. Inform. Theory (Louvain-La-Neuve, Belgium, 2002), 307–314

[3] Preneel B., Van Leekwijck W., Van Linden L., et al., “Propagation characteristics of Boolean functions”, EUROCRYPT'90, LNCS, 473, 1991, 161–173 | MR | Zbl

[4] Langevin P., Leander G., “Counting all bent functions in dimension eight 99270589265934370305785861242880”, Des. Codes Cryptogr., 59 (2011), 193–205 | DOI | MR | Zbl

[5] Szabados T., A Simple Wide Range Approximation of Symmetric Binomial Distributions, 2016, arXiv: 1612.01112 [math.PR]

[6] Agievich S., “On the representation of bent functions by bent rectangles”, Probabilistic Methods in Discrete Mathematics, Fifth Intern. Conf. (Petrozavodsk, Russia, June 1–6, 2000), VSP, Utrecht, Boston, 2002, 121–135

[7] Agievich S., “Bent rectangles”, Proc. NATO Advanced Study Institute on Boolean Functions in Cryptology and Information Security (Moscow, September 8–18, 2007), IOS Press, Amsterdam, 2008, 3–22 | MR | Zbl