Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2020_13_a3, author = {S. V. Agievich}, title = {On the continuation to bent functions and upper bounds on their number}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {18--21}, publisher = {mathdoc}, number = {13}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a3/} }
S. V. Agievich. On the continuation to bent functions and upper bounds on their number. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 18-21. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a3/
[1] Tokareva N., Bent Functions: Results and Applications to Cryptography, Academic Press, London, UK–San Diego, CA, USA, 2015 | MR | Zbl
[2] Carlet C., Klapper A., “Upper bounds on the numbers of resilient functions and of bent functions”, Proc. 23rd Symp. Inform. Theory (Louvain-La-Neuve, Belgium, 2002), 307–314
[3] Preneel B., Van Leekwijck W., Van Linden L., et al., “Propagation characteristics of Boolean functions”, EUROCRYPT'90, LNCS, 473, 1991, 161–173 | MR | Zbl
[4] Langevin P., Leander G., “Counting all bent functions in dimension eight 99270589265934370305785861242880”, Des. Codes Cryptogr., 59 (2011), 193–205 | DOI | MR | Zbl
[5] Szabados T., A Simple Wide Range Approximation of Symmetric Binomial Distributions, 2016, arXiv: 1612.01112 [math.PR]
[6] Agievich S., “On the representation of bent functions by bent rectangles”, Probabilistic Methods in Discrete Mathematics, Fifth Intern. Conf. (Petrozavodsk, Russia, June 1–6, 2000), VSP, Utrecht, Boston, 2002, 121–135
[7] Agievich S., “Bent rectangles”, Proc. NATO Advanced Study Institute on Boolean Functions in Cryptology and Information Security (Moscow, September 8–18, 2007), IOS Press, Amsterdam, 2008, 3–22 | MR | Zbl