Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2020_13_a24, author = {V. L. Eliseev}, title = {Neural network obfuscation for computations over encrypted data}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {85--93}, publisher = {mathdoc}, number = {13}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a24/} }
V. L. Eliseev. Neural network obfuscation for computations over encrypted data. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 85-93. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a24/
[1] Nikolenko S., Kadurin A., Arkhangelskaya E., Glubokoe obuchenie. Pogruzhenie v mir neironnykh setei, Piter, SPb., 2020
[2] Alekseev D. V., “Priblizhenie funktsii neskolkikh peremennykh neironnymi setyami”, Fundamentalnaya i prikladnaya matematika, 15:3 (2009), 9–21
[3] Khaikin S., Neironnye seti: polnyi kurs, 2-e izd., Vilyams, M., 2008
[4] Focardi R., Luccio F. L., “Neural cryptanalysis of classical ciphers”, Proc. ICTCS, 2018 http://ceur-ws.org/Vol-2243/paper10.pdf
[5] Danziger M., Henriques M. A. A., “Improved cryptanalysis combining differential and artificial neural network schemes”, Intern. Telecommun. Symp. (ITS) (Sao Paulo, 2014), 1–5
[6] Turcanik M., “Using recurrent neural network for hash function generation”, Intern. Conf. Appl. Electronics (AE) (Pilsen, 2017), 1–4
[7] Lian S., Sun J., Wang Z., One-way hash function based on neural network, arXiv: 0707.4032
[8] Karras D. A., Zorkadis V., “On neural network techniques in the secure management of communication systems through improving and quality assessing pseudorandom stream generators”, Neural Networks, 16:5–6 (2003), 899–905 | DOI
[9] Kanter I., Kinzel W., Kanter E., “Secure exchange of information by synchronization of neural networks”, Europhys. Lett., 2002, no. 57, 141–147 | DOI
[10] Klimov A., Mityagin A., Shamir A., “Analysis of neural cryptography”, LNCS, 2502, 2002, 288–298 | MR
[11] Coutinho M., De Oliveira A. R., Borges F., et al., “Learning perfectly secure cryptography to protect communications with adversarial neural cryptography”, Sensors, 2018, no. 18, 1306 https://pubmed.ncbi.nlm.nih.gov/29695066/ | DOI
[12] Abadi M., Andersen D. G., Learning to protect communications with adversarial neural cryptography, arXiv: 1610.06918
[13] Xie P., Bilenko M., Finley T., et al., Crypto-nets: Neural networks over encrypted data, arXiv: 1412.6181
[14] Hecht-Nielsen R., “Kolmogorov's mapping neural network existence theorem”, IEEE First Annual Int. Conf. on Neural Networks (San Diego, 1987), v. 3, 11–13
[15] Dathathri R., Saarikivi O., Chen H., et al., “CHET: an optimizing compiler for fully-homomorphic neural-network inferencing”, Proc. PLDI 2019, ACM, N.Y., 2019, 142–156 | DOI
[16] Eliseev V. L., “Iskusstvennye neironnye seti kak mekhanizm obfuskatsii vychislenii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2019, no. 12, 165–169
[17] Fergyuson N., Shnaier B., Prakticheskaya kriptografiya, Dialektika, M., 2005