An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 12-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present an algorithm for computing the Stickelberger ideal for multiquadratic fields $K=\mathbb{Q}(\sqrt{d_1}, \sqrt{d_2},\ldots,\sqrt{d_n})$, where $d_i \equiv 1 \pmod 4$ for $i=1,\ldots,n$ and $d_i$'s are pair-wise co-prime. Our result is based on the work of R. Kucera [J. Number Theory 56, 1996]. We systematize the ideas of this work, put them into explicit algorithms, prove their correctness and complexity. For $2^n = [K : \mathbb{Q}]$, our algorithm runs for time $\widetilde{\mathcal{O}}(2^n)$. We hope that the obtained results will serve as the first step towards solving the shortest vector problem for ideals of multiquadratic fields, which is the core problem in lattice-based cryptography.
Keywords: multiquadratic number field, Stickelberger ideal, Stickelberger element, the shortest vector problem.
@article{PDMA_2020_13_a2,
     author = {D. O. Olefirenko and E. A. Kirshanova and E. S. Malygina and S. A. Novoselov},
     title = {An algorithm for computing the {Stickelberger} elements for imaginary multiquadratic fields},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {12--17},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a2/}
}
TY  - JOUR
AU  - D. O. Olefirenko
AU  - E. A. Kirshanova
AU  - E. S. Malygina
AU  - S. A. Novoselov
TI  - An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 12
EP  - 17
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a2/
LA  - ru
ID  - PDMA_2020_13_a2
ER  - 
%0 Journal Article
%A D. O. Olefirenko
%A E. A. Kirshanova
%A E. S. Malygina
%A S. A. Novoselov
%T An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 12-17
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a2/
%G ru
%F PDMA_2020_13_a2
D. O. Olefirenko; E. A. Kirshanova; E. S. Malygina; S. A. Novoselov. An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 12-17. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a2/

[1] Cramer R., Ducas L., Wesolowski B., “Short Stickelberger class relations and application to ideal-SVP”, Advances in Cryptology, Eucrocrypt 2017, Springer, 2017, 324–348 | MR | Zbl

[2] Bauch J., Bernstein D. J., de Valence H., et al., “Short generators without quantum computers: The case of multiquadratics”, Advances in Cryptology, Eucrocrypt 2017, Springer, 2017, 27–59 | MR | Zbl

[3] Biasse J.-F., Vredendaal C., “Fast multiquadratic S-unit computation and application to the calculation of class groups”, Open Book Series, 2, 2019, 103–118 | DOI | MR

[4] Kucera R., “On the Stickelberger ideal and circular units of a compositum of quadratic fields”, J. Number Theory, 56:1 (1996), 139–166 | DOI | MR | Zbl

[5] Sinnott W., “On the Stickelberger ideal and the circular units of an Abelian field”, Invent. Math., 62 (1980), 181–234 | DOI | MR | Zbl

[6] Berndt B. C., Evans R. J., Williams K. S., Topics in Commutative Ring Theory, Wiley, N.Y., 1998

[7] Cohen H., Stevenhagen P., Computational Class Field Theory, 2008, arXiv: 0802.3843 | MR