Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2020_13_a2, author = {D. O. Olefirenko and E. A. Kirshanova and E. S. Malygina and S. A. Novoselov}, title = {An algorithm for computing the {Stickelberger} elements for imaginary multiquadratic fields}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {12--17}, publisher = {mathdoc}, number = {13}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a2/} }
TY - JOUR AU - D. O. Olefirenko AU - E. A. Kirshanova AU - E. S. Malygina AU - S. A. Novoselov TI - An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2020 SP - 12 EP - 17 IS - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a2/ LA - ru ID - PDMA_2020_13_a2 ER -
%0 Journal Article %A D. O. Olefirenko %A E. A. Kirshanova %A E. S. Malygina %A S. A. Novoselov %T An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields %J Prikladnaya Diskretnaya Matematika. Supplement %D 2020 %P 12-17 %N 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a2/ %G ru %F PDMA_2020_13_a2
D. O. Olefirenko; E. A. Kirshanova; E. S. Malygina; S. A. Novoselov. An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 12-17. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a2/
[1] Cramer R., Ducas L., Wesolowski B., “Short Stickelberger class relations and application to ideal-SVP”, Advances in Cryptology, Eucrocrypt 2017, Springer, 2017, 324–348 | MR | Zbl
[2] Bauch J., Bernstein D. J., de Valence H., et al., “Short generators without quantum computers: The case of multiquadratics”, Advances in Cryptology, Eucrocrypt 2017, Springer, 2017, 27–59 | MR | Zbl
[3] Biasse J.-F., Vredendaal C., “Fast multiquadratic S-unit computation and application to the calculation of class groups”, Open Book Series, 2, 2019, 103–118 | DOI | MR
[4] Kucera R., “On the Stickelberger ideal and circular units of a compositum of quadratic fields”, J. Number Theory, 56:1 (1996), 139–166 | DOI | MR | Zbl
[5] Sinnott W., “On the Stickelberger ideal and the circular units of an Abelian field”, Invent. Math., 62 (1980), 181–234 | DOI | MR | Zbl
[6] Berndt B. C., Evans R. J., Williams K. S., Topics in Commutative Ring Theory, Wiley, N.Y., 1998
[7] Cohen H., Stevenhagen P., Computational Class Field Theory, 2008, arXiv: 0802.3843 | MR