Analysis of block cipher modes of operation for RFID devices
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 67-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The RFID system consists of radio-tag and interrogator. The main purpose of devices is authentication with a transmission of small amount of data between tag and interrogator. We study modes that require only block encryption to be implemented in the tag (due to hardware limitations). CTR, OFB and modified CBC modes were analyzed. Modified CBC mode CBC$[F]$ can be specified as follows: $$ C_0 = \text{IV}, C_i = F_k(C_{i-1} \oplus M_i), $$ where $F_k$ denotes either encryption ($F_k = E_k$) or decryption ($F_k = E_k^{-1})$ of one block of data on the key $k$, $M_i$ is the $i$-th block of plaintext, $C_i$ is the $i$-th block of ciphertext, IV is an initialization vector. Assume that the length of the key is $k$ bits, the length of the one block of data is $n$ bits, and consider an adversary that runs time no more than $t$, makes no more than $q$ oracle queries, each of length no more than $m$ blocks. Then, given an oracle access to the CBC$[E_k]$ and $\widehat{\text{CBC}} = \text{CBC}[E_k^{-1}]$ modes, the maximal advantage in the LOR-experiment can be bounded from above by: $$ \text{Adv}^\text{LOR}_{\text{CBC}, \widehat{\text{CBC}}}(t, q, m) \le \frac{3q^2 m^2}{2^n - qm} + \frac{t+q}{2^{k-1}}. $$
Keywords: provable security, RFID, mode of operation.
@article{PDMA_2020_13_a19,
     author = {K. D. Tsaregorodtsev},
     title = {Analysis of block cipher modes of operation for {RFID} devices},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {67--69},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a19/}
}
TY  - JOUR
AU  - K. D. Tsaregorodtsev
TI  - Analysis of block cipher modes of operation for RFID devices
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 67
EP  - 69
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a19/
LA  - ru
ID  - PDMA_2020_13_a19
ER  - 
%0 Journal Article
%A K. D. Tsaregorodtsev
%T Analysis of block cipher modes of operation for RFID devices
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 67-69
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a19/
%G ru
%F PDMA_2020_13_a19
K. D. Tsaregorodtsev. Analysis of block cipher modes of operation for RFID devices. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 67-69. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a19/

[1] Katz J., Lindell Y., Introduction to Modern Cryptography, 2nd Ed., Chapman Hall/CRC, 2014 | MR

[2] Mezhgosudarstvennyi standart GOST 34.13-2018 Informatsionnaya tekhnologiya (IT). Kriptograficheskaya zaschita informatsii. Rezhimy raboty blochnykh shifrov, Standartinform, M., 2018

[3] Ahmetzyanova L. R., Alekseev E. K., Oshkin I. B., et al., “On the properties of the CTR encryption mode of Magma and Kuznyechik block ciphers with re-keying method based on CryptoPro Key Meshing”, Matem. vopr. kriptogr., 8:2 (2017), 39–50 | MR

[4] Rogaway P., Evaluation of Some Block Cipher Modes of Operation, , 2011 https://web.cs.ucdavis.edu/r̃ogaway/papers/modes.pdf

[5] Wooding M., New Proofs for Old Modes, IACR Cryptology ePrint Archive, 2008

[6] Bellare M., Desai A., Jokipii E., Rogaway P., “A concrete security treatment of symmetric encryption”, Proc. 38th Ann. Symp. Foundations of Computer Science, IEEE, 1997, 394–403 | DOI