Characteristics of the data integrity check algorithm based on additive generators and $s$-boxes
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 62-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

During software analysis, the integrity control of large data arrays is relevant. In solving this task it is important to provide an acceptable compromise between cryptographic properties of the integrity check algorithm and the resources necessary for its implementation. We propose the algorithm for generation of 128-bit integrity check value (ICV) for data blocks of size 1 KB (1024 bytes). This algorithm provides positive (from the synthesis position) operational and cryptographic properties and uses the transformations of additive generators and $s$-boxes. The algorithm is implemented by the function $\psi(g^t)\colon V_{2^{13}}\to V_{128}$ with the full mixing of the input data. For $6\le t\le 100$, each bit of the ICV essentially depends on all the bits of the input block. If you randomly choose the initial state $u$, the probability of obtaining the corresponding ICV code $Q$ is estimated by $2^{-128}$. The average number of the tested pairs of blocks $(u,u')$, where $u\ne u'$ and $Q(u)=Q(u')$, is approximately equal to $2^{64}$. The computational complexity of the function $\psi(g^t)$ is in the order of $t(5u+8v)$, where $u$ is the computational complexity of adding two numbers modulo $2^{64}$, and $v$ is the computational complexity of the $s$-box calculation. According to the conducted experiments, the speed of ICV generation varies from 3500 ($t$=6) to 250 Mbit/s ($t$=96), respectively. At the same values of $t$, the time of ICV generation varies from 18 to 250 $\mu s$.
Keywords: additive generators, data integrity control, matrix-graph approach, mixing properties, shift registers.
@article{PDMA_2020_13_a18,
     author = {V. M. Fomichev and A. M. Koreneva and T. R. Nabiev},
     title = {Characteristics of the data integrity check algorithm based on additive generators and $s$-boxes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {62--66},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a18/}
}
TY  - JOUR
AU  - V. M. Fomichev
AU  - A. M. Koreneva
AU  - T. R. Nabiev
TI  - Characteristics of the data integrity check algorithm based on additive generators and $s$-boxes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 62
EP  - 66
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a18/
LA  - ru
ID  - PDMA_2020_13_a18
ER  - 
%0 Journal Article
%A V. M. Fomichev
%A A. M. Koreneva
%A T. R. Nabiev
%T Characteristics of the data integrity check algorithm based on additive generators and $s$-boxes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 62-66
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a18/
%G ru
%F PDMA_2020_13_a18
V. M. Fomichev; A. M. Koreneva; T. R. Nabiev. Characteristics of the data integrity check algorithm based on additive generators and $s$-boxes. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 62-66. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a18/

[1] Budzko V. I., Melnikov D. A., Fomichev V. M., “Bazovye trebovaniya k podsistemam obespecheniya kriptoklyuchami v informatsionno-tekhnologicheskikh sistemakh vysokoi dostupnosti”, Sistemy vysokoi dostupnosti, 12:3 (2016), 73–82

[2] Fomichev V. M., “Matrix-graph approach for studying nonlinearity of transformations on vector space”, VIII simp. «Sovremennye tendentsii v kriptografii» CTCrypt 2019 https://ctcrypt.ru/files/files/2019/materials/08_Fomichev.pdf

[3] Fomichev V. M., Koreneva A. M., “Mixing properties of modified additive generators”, J. Appl. Ind. Math., 11 (2017), 215–226 | DOI | MR | Zbl

[4] Fomichev V. M., Avezova Ya. E., Koreneva A. M., Kyazhin S. N., “Primitivity and local primitivity of digraphs and nonnegative matrices”, J. Appl. Ind. Math., 12 (2018), 453–469 | DOI | MR | Zbl