Experimental estimates of the computational complexity of one class of cryptoalgorithms based on the generalization of Feistel networks
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 59-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The development of information technologies and the need to protect information indicate the relevance of developing new cryptographic algorithms, such as block ciphers with different block sizes that correspond to modern requirements for cryptographic stability and performance. This paper presents the results of experimental studies of algorithm 256-3 performance (block size is 256 bits), proposed by Russian researchers in 2018. This paper provides a performance comparison between 256-3 and well-known block ciphers. The comparison has been conducted by running implementations of algorithms in C++ programming language using Crypto++ library. The results showed that the 256-3 algorithm runs around 24.57 cycles per byte and performance of 256-3 from 1.2 to 2.6 times higher than the performance of the algorithms Magma (GOST 28147-89), Kuznyechik (GOST 34.12-2018), SEED, HIGHT, Camellia-256, Kalyna-256/256, MARS-256, CAST-256, which indicates that 256-3 is a positive (from the synthesis position).
Keywords: block cipher performance, block ciphers benchmarks, GOST, Kuznyechik, AES, Rijndael, SEED, SM4, HIGHT, Camellia, Kalyna, CAST, Crypto++.
Mots-clés : 256-3
Mots-clés : Magma, MARS, RC6
@article{PDMA_2020_13_a17,
     author = {V. M. Fomichev and D. A. Bobrovskiy and A. M. Koreneva},
     title = {Experimental estimates of the computational complexity of one class of cryptoalgorithms based on the generalization of {Feistel} networks},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {59--62},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a17/}
}
TY  - JOUR
AU  - V. M. Fomichev
AU  - D. A. Bobrovskiy
AU  - A. M. Koreneva
TI  - Experimental estimates of the computational complexity of one class of cryptoalgorithms based on the generalization of Feistel networks
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 59
EP  - 62
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a17/
LA  - ru
ID  - PDMA_2020_13_a17
ER  - 
%0 Journal Article
%A V. M. Fomichev
%A D. A. Bobrovskiy
%A A. M. Koreneva
%T Experimental estimates of the computational complexity of one class of cryptoalgorithms based on the generalization of Feistel networks
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 59-62
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a17/
%G ru
%F PDMA_2020_13_a17
V. M. Fomichev; D. A. Bobrovskiy; A. M. Koreneva. Experimental estimates of the computational complexity of one class of cryptoalgorithms based on the generalization of Feistel networks. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 59-62. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a17/

[1] Fomichev V., Koreneva A., “Encryption performance and security of certain wide block ciphers”, J. Comput. Virol. Hack. Tech., 2020 | DOI

[2] Fomichev V. M., Koreneva A. M., Miftahutdinova A. R., Zadorozhniy D. I., “Evaluation of the maximum performance of block encryption algorithms”, Math. Aspects Cryptogr., 10:2 (2019), 7–16 | MR

[3] ISO/IEC 18033-3. IT Security Techniques. Encryption Algorithms. P. 3: Block Ciphers, https://www.iso.org/standard/54531.html

[4] Kriptograficheskaya krossplatformennaya C++ biblioteka Crypto++ 8.2 s otkrytym iskhodnym kodom, https://www.cryptopp.com/