Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2020_13_a13, author = {E. A. Kirshanova and N. S. Kolesnikov and E. S. Malygina and S. A. Novoselov}, title = {Post-quantum signature proposal for standardisation}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {44--51}, publisher = {mathdoc}, number = {13}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a13/} }
TY - JOUR AU - E. A. Kirshanova AU - N. S. Kolesnikov AU - E. S. Malygina AU - S. A. Novoselov TI - Post-quantum signature proposal for standardisation JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2020 SP - 44 EP - 51 IS - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a13/ LA - ru ID - PDMA_2020_13_a13 ER -
%0 Journal Article %A E. A. Kirshanova %A N. S. Kolesnikov %A E. S. Malygina %A S. A. Novoselov %T Post-quantum signature proposal for standardisation %J Prikladnaya Diskretnaya Matematika. Supplement %D 2020 %P 44-51 %N 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a13/ %G ru %F PDMA_2020_13_a13
E. A. Kirshanova; N. S. Kolesnikov; E. S. Malygina; S. A. Novoselov. Post-quantum signature proposal for standardisation. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 44-51. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a13/
[1] Alkim E., Ducas L., Pöppelmann T., Schwabe P., “Post-quantum key exchange: A new hope”, USENIX Conf. Security Symposium, 2016, 327–343
[2] Adeline L., Stehlé S., “Worst-case to average-case reductions for module lattices”, Des. Codes Cryptography, 75:3 (2015), 565–599 | DOI | MR | Zbl
[3] Kirshanova E., Kolesnikov N., Malygina E., Novoselov S., Proekt standartizatsii post-kvantovoi tsifrovoi podpisi (polnaya versiya), https://crypto-kantiana.com/main_papers/main_Signature.pdf
[4] Fiat A., Shamir A., “How to prove yourself: Practical solutions to identification and signature problems”, CRYPTO'86, LNCS, 263, 1987, 186–194 | MR | Zbl
[5] Lyubashevsky V., “Fiat — Shamir with aborts: Applications to lattice and factoring-based signatures”, ASIACRYPT'2009, LNCS, 5912, 2009, 598–616 | MR | Zbl
[6] Bai S., Galbraith S. D., “An improved compression technique for signatures based on learning with errors”, Topics in Cryptology — CT-RSA 2014, LNCS, 8366, 2014, 28–47 | MR | Zbl
[7] Ducas L., Kiltz E., Lepoint T., et al., “CRYSTALS-Dilithium: A lattice-based digital signature scheme”, IACR Trans. Cryptographic Hardware and Embedded Systems, 2018, no. 1, 238–268 | DOI | MR
[8] Alkim E., Bindel N., Buchmann J., et al., “Revisiting TESLA in the quantum random oracle model”, PQCrypto 2017, LNCS, 10346, 2017, 143–162 | MR | Zbl
[9] D'Anvers J.-P., Karmakar A., Roy S. S., Vercauteren F., “Saber: Module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM”, Progress in Cryptology, AFRICACRYPT 2018, Springer, 2018, 282–305 | MR | Zbl
[10] Banerjee A., Peikert C., Rosen A., “Pseudorandom functions and lattices”, Ann. Intern. Conf. Theory and Appl. of Cryptographic Techniques, Springer, 2012, 719–737 | MR | Zbl
[11] Regev O., “On lattices, learning with errors, random linear codes, and cryptography”, J. ACM, 56:6 (2005), 84–93 | MR
[12] Bogdanov A., Guo S., Masny D., et al., “On the hardness of learning with rounding over small modulus”, Theory of Cryptography, LNCS, 9562, 2016, 209–224 | MR | Zbl
[13] Ajtai M., “Generating hard instances of lattice problems (extended abstract)”, Proc. 28th Ann. ACM Symp. Theory Computing, 1996, 99–108 | MR | Zbl
[14] Kiltz E., Lyubashevsky V., Schaffner C., “A concrete treatment of Fiat — Shamir signatures in the quantum random-oracle model”, Adv. Cryptology, EUROCRYPT 2018, Springer, 2018, 552–586 | MR | Zbl
[15] Albrecht M. R., Göpfert F., Virdia F., Wunderer T., “Revisiting the expected cost of solving uSVP and applications to LWE”, ASIACRYPT 2017, LNCS, 10624, 2017, 297–322 | MR | Zbl
[16] Albrecht M. R., Curtis B. R., Deo A., et al., Estimate all the $\{$LWE, NTRU$\}$ schemes!, SCN 2018, LNCS, 11035, 2018, 351–367 | MR | Zbl