Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2020_13_a10, author = {K. V. Kalgin and V. A. Idrisova}, title = {On a secondary construction of quadratic {APN} functions}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {37--39}, publisher = {mathdoc}, number = {13}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a10/} }
K. V. Kalgin; V. A. Idrisova. On a secondary construction of quadratic APN functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 37-39. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a10/
[1] Nyberg K., “Differentially uniform mappings for cryptography”, EUROCRYPT'93, LNCS, 765, 1994, 55–64 | MR | Zbl
[2] Carlet C., “Open questions on nonlinearity and on APN Functions”, WAIFI 2014, LNCS, 9061, 2015, 83–107 | MR | Zbl
[3] Glukhov M. M., “On the approximation of discrete functions by linear functions”, Matematicheskie Voprosy Kriptografii, 7:4 (2016), 29–50 (in Russian) | DOI | MR
[4] Tuzhilin M. E., “APN-functions”, Prikladnaya Diskretnaya Matematika, 2009, no. 3(5), 14–20 (in Russian) | DOI
[5] Gorodilova A. A., “Characterization of almost perfect nonlinear functions in terms of subfunctions”, Discrete Math. Appl., 26:4 (2016), 193–202 | DOI | MR | Zbl
[6] Idrisova V. A., “On an algorithm generating 2-to-1 APN functions and its applications to “the big APN problem””, Cryptogr. Commun., 2019, no. 11, 21–39 | DOI | MR | Zbl
[7] Beth T., Ding C., “On almost perfect nonlinear permutations”, EUROCRYPT'93, LNCS, 765, 1993, 65–76 | MR
[8] Yu Y., Wang M., Li Y., “A matrix approach for constructing quadratic APN functions”, Des. Codes Cryptogr., 73 (2014), 587–600 | DOI | MR | Zbl
[9] Yu Y., Kaleyski N. S., Budaghyan L., Li Y., Classification of Quadratic APN Functions with Coefficients in GF(2) for Dimensions up to 9, IACR Cryptol. ePrint Arch. No 1491, 2019 | MR | Zbl
[10] Brinkmann M., Leander G., “On the classification of APN functions up to dimension five”, Des. Codes Cryptogr., 49:1–3 (2008), 273–288 | DOI | MR | Zbl