On a secondary construction of quadratic APN functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 37-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Almost perfect nonlinear functions possess the optimal resistance to the differential cryptanalysis and are widely studied. Most known constructions of APN functions are obtained as functions over finite fields $\mathbb{F}_{2^n}$ and very little is known about combinatorial constructions in $\mathbb{F}_2^n$. We consider how to obtain a quadratic APN function in $n+1$ variables from a given quadratic APN function in $n$ variables using special restrictions on new terms.
Keywords: vectorial Boolean function, APN function, quadratic function, secondary construction.
@article{PDMA_2020_13_a10,
     author = {K. V. Kalgin and V. A. Idrisova},
     title = {On a secondary construction of quadratic {APN} functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {37--39},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a10/}
}
TY  - JOUR
AU  - K. V. Kalgin
AU  - V. A. Idrisova
TI  - On a secondary construction of quadratic APN functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 37
EP  - 39
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a10/
LA  - en
ID  - PDMA_2020_13_a10
ER  - 
%0 Journal Article
%A K. V. Kalgin
%A V. A. Idrisova
%T On a secondary construction of quadratic APN functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 37-39
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a10/
%G en
%F PDMA_2020_13_a10
K. V. Kalgin; V. A. Idrisova. On a secondary construction of quadratic APN functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 37-39. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a10/

[1] Nyberg K., “Differentially uniform mappings for cryptography”, EUROCRYPT'93, LNCS, 765, 1994, 55–64 | MR | Zbl

[2] Carlet C., “Open questions on nonlinearity and on APN Functions”, WAIFI 2014, LNCS, 9061, 2015, 83–107 | MR | Zbl

[3] Glukhov M. M., “On the approximation of discrete functions by linear functions”, Matematicheskie Voprosy Kriptografii, 7:4 (2016), 29–50 (in Russian) | DOI | MR

[4] Tuzhilin M. E., “APN-functions”, Prikladnaya Diskretnaya Matematika, 2009, no. 3(5), 14–20 (in Russian) | DOI

[5] Gorodilova A. A., “Characterization of almost perfect nonlinear functions in terms of subfunctions”, Discrete Math. Appl., 26:4 (2016), 193–202 | DOI | MR | Zbl

[6] Idrisova V. A., “On an algorithm generating 2-to-1 APN functions and its applications to “the big APN problem””, Cryptogr. Commun., 2019, no. 11, 21–39 | DOI | MR | Zbl

[7] Beth T., Ding C., “On almost perfect nonlinear permutations”, EUROCRYPT'93, LNCS, 765, 1993, 65–76 | MR

[8] Yu Y., Wang M., Li Y., “A matrix approach for constructing quadratic APN functions”, Des. Codes Cryptogr., 73 (2014), 587–600 | DOI | MR | Zbl

[9] Yu Y., Kaleyski N. S., Budaghyan L., Li Y., Classification of Quadratic APN Functions with Coefficients in GF(2) for Dimensions up to 9, IACR Cryptol. ePrint Arch. No 1491, 2019 | MR | Zbl

[10] Brinkmann M., Leander G., “On the classification of APN functions up to dimension five”, Des. Codes Cryptogr., 49:1–3 (2008), 273–288 | DOI | MR | Zbl