On properties of the largest probability for difference transition under a random bijective group mapping
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 203-205
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider two finite groups $(G_1,\otimes)$, $(G_2, \odot)$ with binary operations $ \otimes$, $\odot$.
In practice, $G_1$ and $G_2$ are usually equal to the additive group $(V_m, \oplus)$ of the $m$-dimensional vector space $V_m$ over $\mathrm{GF}(2)$ or the additive group $(\mathbb{Z}_{2^m}, \boxplus)$ of the residues ring $\mathbb{Z}_{2^m}$.
Nonabelian group of order $2^m$ having a cyclic subgroup of index $2$ can be considered as the nearest one to the additive group $(\mathbb{Z}_{2^m}, \boxplus)$. These groups are the dihedral group $(D_{2^{(m-1)}}, \diamond)$ and the generalized quaternion group
$(Q_{2^m}, \boxtimes)$.
In differential technique and its generalizations, each bijective mapping is associated with the differences table. In this paper,
for all $\otimes, \odot \in \{\oplus, \boxplus, \boxtimes, \diamond \}$, we experimentally study a random value ${q^{( \otimes , \odot )}}$ that is equal to $|G_1|{p^{( \otimes , \odot )}}$, where ${p^{( \otimes , \odot )}}$ is the largest element of the differences table corresponding to a random mapping $s: G_1 \to G_2$. We consider randomly chosen bijective mappings as well as real S-boxes. As for all $\otimes, \odot \in \{\oplus, \boxplus, \boxtimes, \diamond \}$, we compute ${q^{( \otimes , \odot )}}$ for $S$-boxes of ciphers Aes, Anubis, Belt, Crypton, Fantomas, iScream, Kalyna, Khazad, Kuznyechik, Picaro, Safer, Scream, Zorro, Gift, Panda, Pride, Prince, Prost, Klein, Noekeon, Piccolo.
Keywords:
differences table, differentially $d$-uniform mapping, $S$-boxes, generalized quaternion group, dihedral group.
@article{PDMA_2019_12_a56,
author = {V. V. Vlasova and M. A. Pudovkina},
title = {On properties of the largest probability for difference transition under a random bijective group mapping},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {203--205},
publisher = {mathdoc},
number = {12},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/}
}
TY - JOUR AU - V. V. Vlasova AU - M. A. Pudovkina TI - On properties of the largest probability for difference transition under a random bijective group mapping JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 203 EP - 205 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/ LA - ru ID - PDMA_2019_12_a56 ER -
%0 Journal Article %A V. V. Vlasova %A M. A. Pudovkina %T On properties of the largest probability for difference transition under a random bijective group mapping %J Prikladnaya Diskretnaya Matematika. Supplement %D 2019 %P 203-205 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/ %G ru %F PDMA_2019_12_a56
V. V. Vlasova; M. A. Pudovkina. On properties of the largest probability for difference transition under a random bijective group mapping. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 203-205. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/