@article{PDMA_2019_12_a56,
author = {V. V. Vlasova and M. A. Pudovkina},
title = {On properties of the largest probability for difference transition under a random bijective group mapping},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {203--205},
year = {2019},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/}
}
TY - JOUR AU - V. V. Vlasova AU - M. A. Pudovkina TI - On properties of the largest probability for difference transition under a random bijective group mapping JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 203 EP - 205 IS - 12 UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/ LA - ru ID - PDMA_2019_12_a56 ER -
%0 Journal Article %A V. V. Vlasova %A M. A. Pudovkina %T On properties of the largest probability for difference transition under a random bijective group mapping %J Prikladnaya Diskretnaya Matematika. Supplement %D 2019 %P 203-205 %N 12 %U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/ %G ru %F PDMA_2019_12_a56
V. V. Vlasova; M. A. Pudovkina. On properties of the largest probability for difference transition under a random bijective group mapping. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 203-205. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/
[1] Canteaut A., Duval S., Leurent G., “Construction of lightweight $S$-boxes using Feistel and Misty structures”, SAC'2015, LNSC, 9566, 2016, 373–393 | MR | Zbl
[2] Nyberg K., Knudsen L. R., “Provable security against differential cryptanalysis”, CRYPTO'92, LNCS, 740, 1993, 566–574 | MR | Zbl
[3] Nyberg K., “Differential uniform mappings for cryptography”, EUROCRYPT'93, LNCS, 765, 1993, 55–64 | MR
[4] Massey J. L., “SAFER K-64: A byte-oriented block ciphering algorithm”, FSE'93, LNCS, 809, 1994, 1–16
[5] Hawkes P., O'Connor L., “XOR and Non-XOR differential probabilities”, EUROCRYPT'99, LNCS, 1592, 1999, 272–285 | MR | Zbl
[6] Kholl M., Teoriya grupp, IL, M., 1962
[7] Knuth D., The Art of Computer Programming, v. 2, Addison-Wesley, 1981 | MR | Zbl