On properties of the largest probability for difference transition under a random bijective group mapping
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 203-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two finite groups $(G_1,\otimes)$, $(G_2, \odot)$ with binary operations $ \otimes$, $\odot$. In practice, $G_1$ and $G_2$ are usually equal to the additive group $(V_m, \oplus)$ of the $m$-dimensional vector space $V_m$ over $\mathrm{GF}(2)$ or the additive group $(\mathbb{Z}_{2^m}, \boxplus)$ of the residues ring $\mathbb{Z}_{2^m}$. Nonabelian group of order $2^m$ having a cyclic subgroup of index $2$ can be considered as the nearest one to the additive group $(\mathbb{Z}_{2^m}, \boxplus)$. These groups are the dihedral group $(D_{2^{(m-1)}}, \diamond)$ and the generalized quaternion group $(Q_{2^m}, \boxtimes)$. In differential technique and its generalizations, each bijective mapping is associated with the differences table. In this paper, for all $\otimes, \odot \in \{\oplus, \boxplus, \boxtimes, \diamond \}$, we experimentally study a random value ${q^{( \otimes , \odot )}}$ that is equal to $|G_1|{p^{( \otimes , \odot )}}$, where ${p^{( \otimes , \odot )}}$ is the largest element of the differences table corresponding to a random mapping $s: G_1 \to G_2$. We consider randomly chosen bijective mappings as well as real S-boxes. As for all $\otimes, \odot \in \{\oplus, \boxplus, \boxtimes, \diamond \}$, we compute ${q^{( \otimes , \odot )}}$ for $S$-boxes of ciphers Aes, Anubis, Belt, Crypton, Fantomas, iScream, Kalyna, Khazad, Kuznyechik, Picaro, Safer, Scream, Zorro, Gift, Panda, Pride, Prince, Prost, Klein, Noekeon, Piccolo.
Keywords: differences table, differentially $d$-uniform mapping, $S$-boxes, generalized quaternion group, dihedral group.
@article{PDMA_2019_12_a56,
     author = {V. V. Vlasova and M. A. Pudovkina},
     title = {On properties of the largest probability for difference transition under a random bijective group mapping},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {203--205},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/}
}
TY  - JOUR
AU  - V. V. Vlasova
AU  - M. A. Pudovkina
TI  - On properties of the largest probability for difference transition under a random bijective group mapping
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 203
EP  - 205
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/
LA  - ru
ID  - PDMA_2019_12_a56
ER  - 
%0 Journal Article
%A V. V. Vlasova
%A M. A. Pudovkina
%T On properties of the largest probability for difference transition under a random bijective group mapping
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 203-205
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/
%G ru
%F PDMA_2019_12_a56
V. V. Vlasova; M. A. Pudovkina. On properties of the largest probability for difference transition under a random bijective group mapping. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 203-205. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a56/

[1] Canteaut A., Duval S., Leurent G., “Construction of lightweight $S$-boxes using Feistel and Misty structures”, SAC'2015, LNSC, 9566, 2016, 373–393 | MR | Zbl

[2] Nyberg K., Knudsen L. R., “Provable security against differential cryptanalysis”, CRYPTO'92, LNCS, 740, 1993, 566–574 | MR | Zbl

[3] Nyberg K., “Differential uniform mappings for cryptography”, EUROCRYPT'93, LNCS, 765, 1993, 55–64 | MR

[4] Massey J. L., “SAFER K-64: A byte-oriented block ciphering algorithm”, FSE'93, LNCS, 809, 1994, 1–16

[5] Hawkes P., O'Connor L., “XOR and Non-XOR differential probabilities”, EUROCRYPT'99, LNCS, 1592, 1999, 272–285 | MR | Zbl

[6] Kholl M., Teoriya grupp, IL, M., 1962

[7] Knuth D., The Art of Computer Programming, v. 2, Addison-Wesley, 1981 | MR | Zbl