On the generic complexity of the decoding problem for linear codes
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 198-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic-case approach to algorithmic problems was introduced by Miasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. In this paper, we consider generic complexity of the decoding problem for linear codes over finite fields. We fit this problem in the frameworks of generic complexity and prove that its natural subproblem is generically hard provided that this problem is hard in the worst case.
Keywords: generic complexity, linear codes, McEliece cryptosystem.
@article{PDMA_2019_12_a55,
     author = {A. N. Rybalov},
     title = {On the generic complexity of the decoding problem for linear codes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {198--202},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a55/}
}
TY  - JOUR
AU  - A. N. Rybalov
TI  - On the generic complexity of the decoding problem for linear codes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 198
EP  - 202
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a55/
LA  - ru
ID  - PDMA_2019_12_a55
ER  - 
%0 Journal Article
%A A. N. Rybalov
%T On the generic complexity of the decoding problem for linear codes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 198-202
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a55/
%G ru
%F PDMA_2019_12_a55
A. N. Rybalov. On the generic complexity of the decoding problem for linear codes. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 198-202. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a55/

[1] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 42:44 (1978), 111–116

[2] Romankov V. A., Vvedenie v kriptografiyu, 2-e izd., ispr., FORUM, M., 2012, 240 pp.

[3] Rybalov A. N., Vvedenie v teoriyu kodov, ispravlyayuschikh oshibki, Izd-vo Om. un-ta, Omsk, 2007, 131 pp.

[4] Berlekamp E., McEliece R., Van Tilborg H., “On the inherent intractability of certain coding problems”, IEEE Trans. Inform. Theory, 24:3 (1978), 384–386 | DOI | MR | Zbl

[5] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl

[6] Impagliazzo R., Wigderson A., “P=BPP unless E has subexponential circuits: Derandomizing the XOR lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR