Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2019_12_a55, author = {A. N. Rybalov}, title = {On the generic complexity of the decoding problem for linear codes}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {198--202}, publisher = {mathdoc}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a55/} }
A. N. Rybalov. On the generic complexity of the decoding problem for linear codes. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 198-202. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a55/
[1] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 42:44 (1978), 111–116
[2] Romankov V. A., Vvedenie v kriptografiyu, 2-e izd., ispr., FORUM, M., 2012, 240 pp.
[3] Rybalov A. N., Vvedenie v teoriyu kodov, ispravlyayuschikh oshibki, Izd-vo Om. un-ta, Omsk, 2007, 131 pp.
[4] Berlekamp E., McEliece R., Van Tilborg H., “On the inherent intractability of certain coding problems”, IEEE Trans. Inform. Theory, 24:3 (1978), 384–386 | DOI | MR | Zbl
[5] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[6] Impagliazzo R., Wigderson A., “P=BPP unless E has subexponential circuits: Derandomizing the XOR lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR