Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 24-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

An orthomorphism of a group $(X, \cdot )$ is a permutation $g:X \to X$ such that the mapping $x \mapsto {x^{ - 1}}g(x)$ is also a permutation. In the field of symmetric-key cryptography, orthomorphisms of Abelian groups have been used in the Lai–Massey scheme, the FOX family of block ciphers, the quasi-Feistel network, block ciphers in Davies–Meyer mode, and authentication codes. In this paper, we study orthomorphisms, complete mappings and their variations of nonabelian key-addition groups. In the SAFER block cipher, a linear transformation, called the pseudo-Hadamard transformation, has been used to provide the diffusion that a good cipher requires. We describe ten variations of the pseudo-Hadamard transformations on nonabelian groups, which are defined by a permutation $g:X \to X$. We have proved that our ten variations are permutations iff $g$ is an orthomorphism or its variation.
Keywords: orthomorphism, complete mapping, nonabelian group, SAFER block cipher.
Mots-clés : pseudo-Hadamard transformation
@article{PDMA_2019_12_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Variations of orthomorphisms and {pseudo-Hadamard} transformations on nonabelian groups},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {24--27},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 24
EP  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a5/
LA  - ru
ID  - PDMA_2019_12_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 24-27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a5/
%G ru
%F PDMA_2019_12_a5
B. A. Pogorelov; M. A. Pudovkina. Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 24-27. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a5/

[1] Evans A., Orthomorphisms Graphs and Groups, Springer Verlag, Berlin, 1992 | MR

[2] Johnson D. M., Dulmage A. L., Mendelsohn N. S., “Orthomorphisms of groups and orthogonal Latin squares”, Canad. J. Math., 13 (1961), 356–372 | DOI | MR | Zbl

[3] Glukhov M. M., “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2:2 (2008), 28–32

[4] Glukhov M. M., “O metodakh postroeniya sistem ortogonalnykh kvazigrupp s ispolzovaniem grupp”, Matematicheskie voprosy kriptografii, 2:4 (2011), 5–24 | DOI

[5] Mittenthal L., “Block substitutions using orthomorphic mappings”, Adv. Appl. Math., 16:1 (1995), 59–71 | DOI | MR | Zbl

[6] Vaudenay S., “On the Lai — Massey schemes”, ASIACRYPT'99, LNCS, 1716, 1999, 8–19 | MR | Zbl

[7] Yun A., Park J., Lee J., “On Lai — Massey and quasi-Feistel ciphers”, Des. Codes Cryptogr., 58 (2011), 45–72 | DOI | MR | Zbl

[8] Junod P., Vaudenay S., “FOX: A new family of block ciphers”, Selected Areas in Cryptography'04, LNCS, 3357, 2005, 114–129 | MR | Zbl

[9] Gilboa S., Gueron S., Balanced permutations Even-Mansour ciphers, Cryptology ePrint Archive, Report 2014/642, 2014

[10] Massey J. L., “SAFER K-64: a byte-oriented block-ciphering algorithm”, FSE'94, LNCS, 809, 1994, 1–17 | Zbl