Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2019_12_a49, author = {I. A. Kamil and H. H. K. Sudani and A. A. Lobov and M. B. Abrosimov}, title = {On the generation of minimal graph extensions by the method of canonical representatives}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {179--182}, publisher = {mathdoc}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a49/} }
TY - JOUR AU - I. A. Kamil AU - H. H. K. Sudani AU - A. A. Lobov AU - M. B. Abrosimov TI - On the generation of minimal graph extensions by the method of canonical representatives JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 179 EP - 182 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a49/ LA - ru ID - PDMA_2019_12_a49 ER -
%0 Journal Article %A I. A. Kamil %A H. H. K. Sudani %A A. A. Lobov %A M. B. Abrosimov %T On the generation of minimal graph extensions by the method of canonical representatives %J Prikladnaya Diskretnaya Matematika. Supplement %D 2019 %P 179-182 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a49/ %G ru %F PDMA_2019_12_a49
I. A. Kamil; H. H. K. Sudani; A. A. Lobov; M. B. Abrosimov. On the generation of minimal graph extensions by the method of canonical representatives. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 179-182. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a49/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C.25:9 (1976), 875–884 | DOI | MR
[2] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[3] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.
[4] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 2010, no. 5(88), 643–650 | DOI | Zbl
[5] Brinkmann G., “Isomorphism rejection in structure generation programs”, DIMACS Series Discr. Math. Theor. Comput. Sci., 51 (2000), 25–38 | DOI | MR | Zbl