On the generation of minimal graph extensions by the method of canonical representatives
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 179-182
Cet article a éte moissonné depuis la source Math-Net.Ru
A graph $G^*$ is a $k$-vertex (edge) extension of a graph $G$ if every graph obtained by removing any $k$ vertices (edges) from $G^*$ contains $G$. A $k$-vertex (edge) extension $G^*$ of graph $G$ is said to be minimal if it contains minimum possible vertices and has the minimum number of edges among all $k$-vertex (edge) extension of graph $G$. The paper proposes an algorithm for generating all non-isomorphic minimal vertex (edge) $k$-extensions of a given graph with isomorphism rejection technique by using method of generating canonical representatives.
Keywords:
fault tolerance, graph extension, canonical code, generating canonical representatives.
Mots-clés : isomorphism
Mots-clés : isomorphism
@article{PDMA_2019_12_a49,
author = {I. A. Kamil and H. H. K. Sudani and A. A. Lobov and M. B. Abrosimov},
title = {On the generation of minimal graph extensions by the method of canonical representatives},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {179--182},
year = {2019},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a49/}
}
TY - JOUR AU - I. A. Kamil AU - H. H. K. Sudani AU - A. A. Lobov AU - M. B. Abrosimov TI - On the generation of minimal graph extensions by the method of canonical representatives JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 179 EP - 182 IS - 12 UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a49/ LA - ru ID - PDMA_2019_12_a49 ER -
%0 Journal Article %A I. A. Kamil %A H. H. K. Sudani %A A. A. Lobov %A M. B. Abrosimov %T On the generation of minimal graph extensions by the method of canonical representatives %J Prikladnaya Diskretnaya Matematika. Supplement %D 2019 %P 179-182 %N 12 %U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a49/ %G ru %F PDMA_2019_12_a49
I. A. Kamil; H. H. K. Sudani; A. A. Lobov; M. B. Abrosimov. On the generation of minimal graph extensions by the method of canonical representatives. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 179-182. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a49/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C.25:9 (1976), 875–884 | DOI | MR
[2] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[3] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.
[4] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 2010, no. 5(88), 643–650 | DOI | Zbl
[5] Brinkmann G., “Isomorphism rejection in structure generation programs”, DIMACS Series Discr. Math. Theor. Comput. Sci., 51 (2000), 25–38 | DOI | MR | Zbl