Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2019_12_a45, author = {V. L. Eliseev}, title = {Artificial neural networks as a mechanism for obfuscation of computations}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {165--169}, publisher = {mathdoc}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a45/} }
V. L. Eliseev. Artificial neural networks as a mechanism for obfuscation of computations. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 165-169. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a45/
[1] Venkatesh S., Ertaul L., “Novel obfuscation algorithms for software security”, Proc. Intern. Conf. SERP'05, v. 1, 2005, 209–215
[2] Varnovskii N. P., Zakharov V. A., Kuzyurin N. N., “Matematicheskie problemy obfuskatsii”, Matematika i bezopasnost informatsionnykh tekhnologii, Materialy konf. (MGU 28–29 oktyabrya 2004 g.), MTsNMO, M., 2005, 65–91
[3] Barak B., Goldreich O., Impagliazzo R., et al., “On the (im)possibility of obfuscating programs”, Crypto'01, LNCS, 2139, 2001, 1–18 | Zbl
[4] Goldwasser S., Guy N. R., “On best-possible obfuscation”, J. Cryptology, 27 (2007), 480–505 | DOI | MR
[5] Garg S., Gentry C., Halevi S., et al., “Candidate indistinguishability obfuscation and functional encryption for all circuits”, Proc. 54th IEEE Ann. Symp. FOCS'13 (October 26–29, 2013), 40–49 | MR | Zbl
[6] Albrecht M. R., Cocis C., Laguillaumie F., Langlois A., “Implementing candidate graded encoding schemes from ideal lattices”, ASIACRYPT 2015, LNCS, 9453, 2015, 752–775 | MR | Zbl
[7] Ma H., Ma X., Liu W., et al., “Control flow obfuscation using neural network to fight concolic testing”, 10th Intern. ICST Conf., SecureComm 2014 (Beijing, China, September 24–26, 2014), v. I, 287–304 | Zbl
[8] Yan Wang, Obfuscation with Turing Machine, A Thesis in Information Sciences and Technology, Pennsylvania State University, 2017, 42 pp.
[9] Khaikin S., Neironnye seti: polnyi kurs, 2-e izd., Vilyams, M., 2008
[10] Alekseev D. V., “Priblizhenie funktsii neskolkikh peremennykh neironnymi setyami”, Fundamentalnaya i prikladnaya matematika, 15b:3 (2009), 9–21
[11] Hecht-Nielsen R., “Kolmogorov's mapping neural network existence theorem”, IEEE First Ann. Int. Conf. Neural Networks (San Diego, 1987), v. 3, 11–13