On the parameters of 2-GOST round key generator
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 137-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

Information security with low resources determines the importance of construction lightweight implementations for known cryptographic algorithms. In 2014, a low-resource implementation of GOST 28147-89 called 2-GOST was presented. Despite attained advantages, the scheme had yet a potential to enhance cryptographic strength by, for example, modifying the key schedule. In 2018, a new algorithm for the generation of round keys for 2-GOST was proposed. The round key generator was based on the shift register of length 8 over the set of binary vectors of length 32. At the same time, the register feedback parameters were not sufficiently substantiated. The aim of this paper is to determine the best (or close to the best) three feedback taps for feedback function and justification of the proposed solution. The first quality criterion is defined by the characteristics of the input data mixing by the register transformation, the second one — by the efficiency of the implementation. As a characteristic of mixing, we use the index of local perfection of register transformation, namely the number of iterations, after which each bit of the generated round key depends essentially on all bits of the initial state. The optimal three feedback taps are identified and the characteristics of the key schedule quality for the proposed and original schemes are compared. It is established that in the initial scheme the value of the local perfection index is the highest among all the feedback functions in the class under the study (the worst index in terms of mixing). We offer the alternative scheme with the smallest index of local perfection and the similar implementation. For both schemes (original and alternative), we carry out the statistical testing of the generator output sequences.
Keywords: 2-GOST, local perfection, matrix-graph approach, mixing properties, round key generator, shift register.
@article{PDMA_2019_12_a39,
     author = {V. M. Fomichev and A. M. Koreneva and A. I. Tulebaev},
     title = {On the parameters of {2-GOST} round key generator},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {137--141},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a39/}
}
TY  - JOUR
AU  - V. M. Fomichev
AU  - A. M. Koreneva
AU  - A. I. Tulebaev
TI  - On the parameters of 2-GOST round key generator
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 137
EP  - 141
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a39/
LA  - ru
ID  - PDMA_2019_12_a39
ER  - 
%0 Journal Article
%A V. M. Fomichev
%A A. M. Koreneva
%A A. I. Tulebaev
%T On the parameters of 2-GOST round key generator
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 137-141
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a39/
%G ru
%F PDMA_2019_12_a39
V. M. Fomichev; A. M. Koreneva; A. I. Tulebaev. On the parameters of 2-GOST round key generator. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 137-141. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a39/

[1] Dmukh A. A., Dygin D. M., Marshalko G. B., “A lightweight-friendly modification of GOST block cipher”, Matem. vopr. kriptogr., 5:2 (2014), 47–55 | DOI

[2] Fomichev V. M., Avezova Ya. A., Koreneva A. M., Kyazhin S. N., “Primitivity and local primitivity of digraphs and nonnegative matrices”, J. Appl. Industr. Math., 12:3 (2018), 453–469 | DOI | MR | Zbl

[3] Koreneva A. M., Polevodin A. V., “Peremeshivayuschie svoistva generatora raundovykh klyuchei algoritma shifrovaniya 2-GOST”, Informatsionnaya bezopasnost v bankovsko-finansovoi sfere, Sb. nauchn. rabot uchastnikov, Prometei, M., 2018, 107–111

[4] Dmukh A., Trifonov D., Chukhno A., “O modifikatsii otechestvennogo nizkoresursnogo kriptograficheskogo algoritma 2-GOST i voprosakh ego realizatsii na PLIS”, RusKripto 2018 (Moskva) https://www.ruscrypto.ru/resource/archive/rc2018/files/02_Dmukh_Trifonov_Chukhno.pdf

[5] A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Special Publication (NIST SP) 800-22 Rev 1a https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic

[6] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, DIALOG-MIFI, M., 2010, 424 pp.