Geometric model of perfect ciphers with three cipher plaintext values
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 113-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we deal with the problem of describing Shannon perfect ciphers (which are absolutely immune against the attack on ciphertext, according to Shannon) when cardinality of alphabet of cipher plaintext values is equal to three. It is shown that there is no minimum by inclusion perfect ciphers with five or six encryption keys. The number of minimum by inclusion perfect ciphers with seven and eight keys are determined. Examples of minimal ciphers with respect to inclusion are built.
Keywords: perfect ciphers, endomorphic ciphers, non-endomorphic ciphers.
@article{PDMA_2019_12_a34,
     author = {N. V. Medvedeva and S. S. Titov},
     title = {Geometric model of perfect ciphers with three cipher plaintext values},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {113--116},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a34/}
}
TY  - JOUR
AU  - N. V. Medvedeva
AU  - S. S. Titov
TI  - Geometric model of perfect ciphers with three cipher plaintext values
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 113
EP  - 116
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a34/
LA  - ru
ID  - PDMA_2019_12_a34
ER  - 
%0 Journal Article
%A N. V. Medvedeva
%A S. S. Titov
%T Geometric model of perfect ciphers with three cipher plaintext values
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 113-116
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a34/
%G ru
%F PDMA_2019_12_a34
N. V. Medvedeva; S. S. Titov. Geometric model of perfect ciphers with three cipher plaintext values. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 113-116. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a34/

[1] Shennon K., “Teoriya svyazi v sekretnykh sistemakh”, Raboty po teorii informatsii i kibernetike, Nauka, M., 1963, 333–402

[2] Alferov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptografii, Gelios ARV, M., 2001

[3] Zubov A. Yu., Sovershennye shifry, Gelios ARV, M., 2003

[4] Medvedeva N. V., Titov S. S., “Opisanie neendomorfnykh maksimalnykh sovershennykh shifrov s dvumya shifrvelichinami”, Prikladnaya diskretnaya matematika, 2015, no. 4 (30), 43–55

[5] Nosov V. A., Sachkov V. N., Tarakanov V. E., “Kombinatornyi analiz (neotritsatelnye matritsy, algoritmicheskie problemy)”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Mat. stat. Teor. Kibernet., 21, VINITI, M., 1977, 120–178

[6] Birkhoff G. D., “Tres observations sobre el algebra lineal”, Revista Universidad Nacional Tucuman. Ser. A, 5 (1946), 147–151 | MR | Zbl

[7] Medvedeva N. V., Titov S. S., “Analogi teoremy Shennona dlya endomorfnykh neminimalnykh shifrov”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 62–65