Homogeneous matroids and block-schemes
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 111-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerns the homogeneous matroids in which all the cycles have the same power. The research is related to the problem of describing homogeneous matroids corresponding to ideal homogeneous secret sharing schemes. A possibility for representing the family of cohyperplanes of a homogeneous matroid like blocks of blocks-schemes including the Steiner triple systems is shown. It is proved that a separating matroid is a homogeneous matroid with three-element cohyperplanes, if and only if its cohyperplanes form Steiner triple systems.
Keywords: secret sharing schemes, homogeneous matroids, block-schemes, Steiner triple systems.
Mots-clés : cycles
@article{PDMA_2019_12_a33,
     author = {N. V. Medvedev and S. S. Titov},
     title = {Homogeneous matroids and block-schemes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {111--113},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a33/}
}
TY  - JOUR
AU  - N. V. Medvedev
AU  - S. S. Titov
TI  - Homogeneous matroids and block-schemes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 111
EP  - 113
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a33/
LA  - ru
ID  - PDMA_2019_12_a33
ER  - 
%0 Journal Article
%A N. V. Medvedev
%A S. S. Titov
%T Homogeneous matroids and block-schemes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 111-113
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a33/
%G ru
%F PDMA_2019_12_a33
N. V. Medvedev; S. S. Titov. Homogeneous matroids and block-schemes. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 111-113. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a33/

[1] V. V. Yaschenko (red.), Vvedenie v kriptografiyu, Piter, SPb., 2001

[2] Bleikli G. R., Kabatyanskii G. A., “Obobschennye idealnye skhemy, razdelyayuschie sekret, i matroidy”, Problemy peredachi informatsii, 33:3 (1997), 102–110 | MR

[3] Parvatov N. G., “Sovershennye skhemy razdeleniya sekreta”, Prikladnaya diskretnaya matematika, 2008, no. 2(2), 50–57

[4] Welsh D. J. A., Matroid Theory, Academic Press, 1976 | MR | Zbl

[5] Marti-Farre J., Padro C., “Secret sharing schemes on sparse homogeneous access structures with rank three”, Electronic J. Combinatorics, 11:1 (2004), 72, 16 pp. | MR

[6] Alekseichuk A. N., “Sovershennye skhemy razdeleniya sekreta i konechnye universalnye algebry”, Reєstratsiya, zberigannya i obrob. danikh, 7:2, 55–65 | MR

[7] Alekseychuk A. N., Lattice-Theoretic Characterization of Secret Sharing Representable Connected Matroids, Cryptology ePrint Archive: Report 2010/348

[8] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[9] Medvedev N. V., Titov S. S., “Ob odnorodnykh matroidakh i blok-skhemakh”, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 21–23