Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2019_12_a3, author = {N. M. Mezhennaya}, title = {On the number of $f$-recurrent runs and tuples in a finite {Markov} chain}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {18--21}, publisher = {mathdoc}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a3/} }
N. M. Mezhennaya. On the number of $f$-recurrent runs and tuples in a finite Markov chain. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 18-21. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a3/
[1] Rozanov Yu. A., Sluchainye protsessy. Kratkii kurs, Nauka, M., 1979, 184 pp.
[2] Mikhailov V. G., “Ob asimptoticheskikh svoistvakh chisla serii sobytii”, Tr. po diskr. matem., 9 (2006), 152–163
[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, V 2-kh t., v. 1, Mir, M., 1984, 528 pp. | MR
[4] Savelev L. Ya., Balakin S. V., Khromov B. V., “Nakryvayuschie serii v dvoichnykh markovskikh posledovatelnostyakh”, Diskret. matem., 15:1 (2003), 50–76 | DOI | Zbl
[5] Savelev L. Ya., Balakin S. V., “Nekotorye primeneniya stokhasticheskoi teorii serii”, Sib. zhurn. industr. matem., 15:3 (2012), 111–123 | MR | Zbl
[6] Tikhomirova M. I., “Predelnye raspredeleniya chisla nepoyavivshikhsya tsepochek odinakovykh iskhodov”, Diskret. matem., 20:3 (2008), 293–300 | DOI | MR | Zbl
[7] Erdos P., Revesz P., “On the length of the longest head-run”, Topics in Inform. Theory, Colloquia Math. Soc. J. Bolyai, 16, Keszthely, 1975, 219–228 | MR
[8] Fu J. C., “Distribution theorem of runs and patterns associated with a sequence of multi-state trials”, Statist. Sinica, 6 (1996), 957–974 | MR | Zbl
[9] Lou W. Y. W., “On runs and longest runs tests: a method of finite Markov chain imbedding”, J. Amer. Statist. Assoc., 91 (1996), 1595–1601 | DOI | MR | Zbl
[10] Vaggelatou E., “On the length of the longest run in a multi-state Markov chain”, Statist. Probab. Let., 62 (2003), 211–221 | DOI | MR | Zbl
[11] Chryssaphinou O., Papastavridis S., Vaggelatou E., “Poisson approximation for the number of non-overlapping appearances of several words in Markov chain”, Combinatorics Probab., 10 (2001), 293–308 | DOI | MR | Zbl
[12] Zhang Y. Z., Wu X. Y., “Some results associated with the longest run in a strongly ergodic Markov chain”, Acta Mathematica Sinica, 29:10 (2013), 1939–1948 | DOI | MR | Zbl
[13] Mikhailov V. G., “O predelnoi teoreme B. A. Sevastyanova dlya summ zavisimykh sluchainykh indikatorov”, Obozrenie prikladnoi i promyshlennoi matematiki, 10:3 (2003), 571–578 | MR
[14] Mezhennaya N. M., “Predelnye teoremy dlya chisla plotnykh $F$-rekurrentnykh serii i tsepochek v posledovatelnosti nezavisimykh sluchainykh velichin”, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Ser. Estestvennye nauki, 2014, no. 3, 11–25 | Zbl
[15] Shoitov A. M., “Veroyatnostnye modeli psevdosluchainykh posledovatelnostei v kriptografii”, Materialy Vtoroi Mezhdunar. nauch. konf. po problemam bezopasnosti i protivodeistviya terrorizmu (MGU im. M. V. Lomonosova), MTsNMO, M., 2006, 116–134
[16] Barbour A. D., Holst L., Janson S., Poisson Approximation, Oxford Univ. Press, Oxford, 1992, 277 pp. | MR | Zbl
[17] Mikhailov V. G., Shoitov A. M., “O dlinnykh povtoreniyakh tsepochek v tsepi Markova”, Diskret. matem., 26:3 (2014), 79–89 | DOI
[18] Minakov A. A., “Poisson approximation for the number of non-decreasing runs in Markov chains”, Matem. vopr. kriptogr., 9:2 (2018), 103–116 | DOI | MR