On the argument of the absence of properties of a random oracle for some cryptographic hash functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 95-98
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents new preimage attacks related to the class of algebraic attacks on hash functions $\mathrm{MD4}$-$k$, $39 \leq k \leq 48$.
Hash function $\mathrm{MD4}$-$k$ consists of first $k$ steps used in $\mathrm{MD4}$ algorithm.
To solve the corresponding
systems of algebraic equations, SAT-solvers are used.
The proposed attacks demonstrate
that $\mathrm{MD4}$-$k$ functions are not random oracles.
More precisely,
we estimate the fraction of easy-invertible outputs of
these functions and show that even for full-round version of hash function $\mathrm{MD4}$, the obtained fraction is very big. To construct such estimations with each function of the kind $\mathrm{MD4}$-$k$, we associate a special function, which input length is much smaller than $512$.
In most cases the preimage finding problem for such function is significantly simpler than the original one.
We show that any value of the special function is the value of function $\mathrm{MD4}$-$k$
and estimate the fraction of these values in $\{0,1\}^{128}$.
This approach allows us to obtain an estimation for the fraction of easy-invertible outputs of original hash function $\mathrm{MD4}$-$k$.
Keywords:
cryptographic hash functions, preimage attack on hash functions, $\mathrm{MD4}$, $\mathrm{MD4}$-$39$, SAT.
@article{PDMA_2019_12_a29,
author = {I. A. Gribanova and A. A. Semenov},
title = {On the argument of the absence of properties of a random oracle for some cryptographic hash functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {95--98},
publisher = {mathdoc},
number = {12},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a29/}
}
TY - JOUR AU - I. A. Gribanova AU - A. A. Semenov TI - On the argument of the absence of properties of a random oracle for some cryptographic hash functions JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 95 EP - 98 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a29/ LA - ru ID - PDMA_2019_12_a29 ER -
%0 Journal Article %A I. A. Gribanova %A A. A. Semenov %T On the argument of the absence of properties of a random oracle for some cryptographic hash functions %J Prikladnaya Diskretnaya Matematika. Supplement %D 2019 %P 95-98 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a29/ %G ru %F PDMA_2019_12_a29
I. A. Gribanova; A. A. Semenov. On the argument of the absence of properties of a random oracle for some cryptographic hash functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 95-98. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a29/