Blocking varieties in Steiner triples
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 93-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of Steiner triples blocking applicable in the secret sharing scheme are considered. This paper describes a method for constructing a blocking set of minimum and maximum powers. For the complement blocking set, a method for estimating the minimum complement power in both linear and nonlinear Steiner triples systems is given. For the corresponding matroids, the ideal secret sharing schemes based on interpolation polynomials with zero trace are implemented. For the nonlinear Steiner triples system with 13 elements, the maximum and minimum cardinalities of the complement of the blocking set are found.
Keywords: system of Steiner triples, blocking sets, secret sharing scheme.
@article{PDMA_2019_12_a28,
     author = {M. V. Vedunova and A. O. Ignatova and K. L. Geut},
     title = {Blocking varieties in {Steiner} triples},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {93--95},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a28/}
}
TY  - JOUR
AU  - M. V. Vedunova
AU  - A. O. Ignatova
AU  - K. L. Geut
TI  - Blocking varieties in Steiner triples
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 93
EP  - 95
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a28/
LA  - ru
ID  - PDMA_2019_12_a28
ER  - 
%0 Journal Article
%A M. V. Vedunova
%A A. O. Ignatova
%A K. L. Geut
%T Blocking varieties in Steiner triples
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 93-95
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a28/
%G ru
%F PDMA_2019_12_a28
M. V. Vedunova; A. O. Ignatova; K. L. Geut. Blocking varieties in Steiner triples. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 93-95. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a28/

[1] Sait olimpiady NSUCRYPTO, http://nsucrypto.nsu.ru/

[2] Tokareva N., Gorodilova A., Agievich S., et al., “Mathematical methods in solutions of the problems from the Third International Students' Olympiad in Cryptography”, Prikladnaya diskretnaya matematika., 2018, no. 40, 34–58 | MR

[3] Geut K. L., Kirienko K. A., Sadkov P. O. i dr., “O yavnykh konstruktsiyakh dlya resheniya zadachi «A secret sharing»”, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 68–70

[4] Kholl M., Kombinatorika, per. s angl., Mir, M., 1970, 424 pp. | MR

[5] Kovalevskaya D. I., Soloveva F. I., Filimonova E. S., “O sistemakh troek Shteinera malogo ranga, vlozhimykh v sovershennye dvoichnye kody”, Diskretnyi analiz i issledovanie operatsii, 20:3(111) (2013), 3–25 | MR | Zbl

[6] Medvedev N. V., Titov S. S., “Ob odnorodnykh matroidakh i blok-skhemakh”, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 21–23

[7] Shamir A., “How to share a secret”, Commun. ACM, 1979, no. 22, 612–613 | DOI | MR | Zbl

[8] Parvatov N. G., “Sovershennye skhemy razdeleniya sekreta”, Prikladnaya diskretnaya matematika, 2008, no. 2(2), 50–57

[9] Asanov M. O., Baranskii V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001, 288 pp.