Connections between quaternary and Boolean bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 73-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is related to quaternary bent functions $f:\mathbb{Z}_4^n\rightarrow\mathbb{Z}_4$. The relation between Walsh — Hadamard transform coefficients of quaternary and two Boolean functions is explored. It is proved that any quaternary bent function is a regular bent function for any $n$. The number of quaternary bent functions in one and two variables is counted. For quaternary bent function in one variable $g(x+2y)=a(x,y)+2b(x,y)$, it is proved that $b$ and $a\oplus b$ are Boolean bent functions, where $x,y\in\mathbb{Z}_2$. Properties of Boolean functions $a,b$ and $a\oplus b$ in representation of quaternary bent function in two variables as $g(x+2y)=a(x,y)+2b(x,y)$ are described.
Keywords: quaternary functions, Boolean functions, regular bent functions.
@article{PDMA_2019_12_a21,
     author = {A. S. Shaporenko},
     title = {Connections between quaternary and {Boolean} bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {73--75},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a21/}
}
TY  - JOUR
AU  - A. S. Shaporenko
TI  - Connections between quaternary and Boolean bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 73
EP  - 75
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a21/
LA  - ru
ID  - PDMA_2019_12_a21
ER  - 
%0 Journal Article
%A A. S. Shaporenko
%T Connections between quaternary and Boolean bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 73-75
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a21/
%G ru
%F PDMA_2019_12_a21
A. S. Shaporenko. Connections between quaternary and Boolean bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 73-75. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a21/

[1] Kumar P. V., Scholtz R. A., Welch L. R., “Generalized bent functions and their properties”, J. Combin. Theory. Ser. A, 40 (1985), 90–107 | DOI | MR | Zbl

[2] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press, 2015 | MR | Zbl