Linear decomposition of discrete functions in terms of shift-composition operation
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 68-73
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the shift-composition operation of discrete functions that arises under shift register's homomorphisms. For an arbitrary function over a finite field, all right linear decompositions are described in terms of shift-composition. Moreover, we study the possibility for representing an arbitrary function by a shift-composition of three functions such that both external functions are linear. It is proved that in the case of a simple field, the concepts of reducibility and linear reducibility coincide for linear functions and quadratic functions that are linear in the external variable.
Keywords:
discrete functions, finite fields, shift register, shift-composition.
@article{PDMA_2019_12_a20,
author = {I. V. Cherednik},
title = {Linear decomposition of discrete functions in terms of shift-composition operation},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {68--73},
year = {2019},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a20/}
}
I. V. Cherednik. Linear decomposition of discrete functions in terms of shift-composition operation. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 68-73. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a20/
[1] Solodovnikov V. I., Registry sdviga i kriptoalgoritmy na ikh osnove, LAP LAMBERT Academic Publishing, 2017
[2] Solodovnikov V. I., “Gomomorfizmy registrov sdviga v lineinye avtomaty”, Diskretnaya matematika, 2008, no. 4, 87–101 | MR
[3] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988 | MR
[4] Solodovnikov V. I., “Gomomorfizmy dvoichnykh registrov sdviga”, Diskretnaya matematika, 2005, no. 1, 73–88 | DOI | MR | Zbl
[5] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Bent- i giperbent-funktsii nad konechnym polem”, Trudy po diskretnoi matematike, 2007, no. 10, 97–122
[6] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 2010, no. 2, 22–33