Linear decomposition of discrete functions in terms of shift-composition operation
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 68-73
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the shift-composition operation of discrete functions that arises under shift register's homomorphisms.
For an arbitrary function over a finite field, all right linear decompositions are described in terms of shift-composition.
Moreover, we study the possibility for representing an arbitrary function by a shift-composition of three functions such that both external functions are linear.
It is proved that in the case of a simple field, the concepts of reducibility and linear reducibility coincide for linear functions and quadratic functions that are linear in the external variable.
Keywords:
discrete functions, finite fields, shift register, shift-composition.
@article{PDMA_2019_12_a20,
author = {I. V. Cherednik},
title = {Linear decomposition of discrete functions in terms of shift-composition operation},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {68--73},
publisher = {mathdoc},
number = {12},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a20/}
}
TY - JOUR AU - I. V. Cherednik TI - Linear decomposition of discrete functions in terms of shift-composition operation JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 68 EP - 73 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a20/ LA - ru ID - PDMA_2019_12_a20 ER -
I. V. Cherednik. Linear decomposition of discrete functions in terms of shift-composition operation. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 68-73. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a20/