Calculation of $3$-torsion ideal for some class of hyperelliptic curves
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 13-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider hyperelliptic curves of genus two defined by the Dickson polynomials. For such curves, we calculate the $3$-torsion ideal, namely we obtain the four generators of this ideal by using the Mumford–Cantor representation for the $3$-torsion divisor and by using of $\theta$- and $\wp$-functions.
Keywords: hyperelliptic curve, Dickson polynomial, modular equation.
Mots-clés : $l$-torsion ideal, $l$-torsion divisor
@article{PDMA_2019_12_a2,
     author = {E. S. Malygina},
     title = {Calculation of $3$-torsion ideal for some class of hyperelliptic curves},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {13--17},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a2/}
}
TY  - JOUR
AU  - E. S. Malygina
TI  - Calculation of $3$-torsion ideal for some class of hyperelliptic curves
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 13
EP  - 17
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a2/
LA  - ru
ID  - PDMA_2019_12_a2
ER  - 
%0 Journal Article
%A E. S. Malygina
%T Calculation of $3$-torsion ideal for some class of hyperelliptic curves
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 13-17
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a2/
%G ru
%F PDMA_2019_12_a2
E. S. Malygina. Calculation of $3$-torsion ideal for some class of hyperelliptic curves. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 13-17. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a2/

[1] Cohen H., Frey G., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall/CRC, 2005

[2] Lidl R., Mullen G. L., Turnwald G., Dickson Polynomials, Chapman and Hall/CRC, 1993 | MR

[3] Novoselov S. A., Counting points on hyperelliptic curves of type $y^2 = x^{2g+1} + a x^{g+1} + b x$, 2019, arXiv: 1902.05992 | MR | Zbl

[4] Malygina E. S., Novoselov S. A., “Division polynomials for hyperelliptic curves defined by Dickson polynomials”, Proc. 8th Workshop on Current Trends in Cryptology (Svetlogorsk, Kaliningrad region, June 4–7, 2019) https://ctcrypt.ru/ematerials2019

[5] Hindry M., Silverman J., Diophantine Geometry. An Introduction, Graduate Texts in Mathematics, 201, Springer Verlag, 2000 | DOI | MR | Zbl

[6] Kampkötter W., Explizite Gleichungen für Jacobische Varietätenhyperelliptisher Kurven, Ph. D. Thesis, Universität Gesamthochschule Essen, 1991