Mots-clés : $l$-torsion ideal, $l$-torsion divisor
@article{PDMA_2019_12_a2,
author = {E. S. Malygina},
title = {Calculation of $3$-torsion ideal for some class of hyperelliptic curves},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {13--17},
year = {2019},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a2/}
}
E. S. Malygina. Calculation of $3$-torsion ideal for some class of hyperelliptic curves. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 13-17. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a2/
[1] Cohen H., Frey G., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall/CRC, 2005
[2] Lidl R., Mullen G. L., Turnwald G., Dickson Polynomials, Chapman and Hall/CRC, 1993 | MR
[3] Novoselov S. A., Counting points on hyperelliptic curves of type $y^2 = x^{2g+1} + a x^{g+1} + b x$, 2019, arXiv: 1902.05992 | MR | Zbl
[4] Malygina E. S., Novoselov S. A., “Division polynomials for hyperelliptic curves defined by Dickson polynomials”, Proc. 8th Workshop on Current Trends in Cryptology (Svetlogorsk, Kaliningrad region, June 4–7, 2019) https://ctcrypt.ru/ematerials2019
[5] Hindry M., Silverman J., Diophantine Geometry. An Introduction, Graduate Texts in Mathematics, 201, Springer Verlag, 2000 | DOI | MR | Zbl
[6] Kampkötter W., Explizite Gleichungen für Jacobische Varietätenhyperelliptisher Kurven, Ph. D. Thesis, Universität Gesamthochschule Essen, 1991