Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 62-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

For linear combinations of coordinate functions of mapping from the vectorspace $V_n$ of all binary vectors of length $n$ to the vectorspace $V_m$, recursive formulas for the distribution of weights of some their subfunctions $w_I^J$ and for the distribution of subsets of their spectral coefficients $\Delta_I^J$ are obtained. By mean of these formulas, we obtain the recursive formula for the number of correlation-immune of order $k$ mappings and the recursive formula for the number of $(n,m,k)$-resilient Boolean mappings.
Keywords: weights of subfunctions, recursion formula, resilient vectorial Boolean function, correlation-immune function.
Mots-clés : spectral coefficient
@article{PDMA_2019_12_a18,
     author = {K. N. Pankov},
     title = {Recursion {Formulas} for the number of $(n, m, k)$-resilient and correlation-immune {Boolean} mappings},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {62--66},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a18/}
}
TY  - JOUR
AU  - K. N. Pankov
TI  - Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 62
EP  - 66
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a18/
LA  - ru
ID  - PDMA_2019_12_a18
ER  - 
%0 Journal Article
%A K. N. Pankov
%T Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 62-66
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a18/
%G ru
%F PDMA_2019_12_a18
K. N. Pankov. Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 62-66. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a18/

[1] MR 26.4.001-2018 «Terminy i opredeleniya v oblasti tekhnologii tsepnoi zapisi dannykh (blokchein) i raspredelennykh reestrov», https://tc26.ru/standarts/metodicheskie-rekomendatsii/

[2] Michels D., Here's how GDPR and the blockchain can coexist, https://thenextweb.com/syndication/2018/07/26/gdpr-blockchain-cryptocurrency/

[3] Pankov K., “Enumeration of Boolean mapping with given cryptographic properties for personal data protection in blockchain data storage”, Proc. 24th Conf. of Open Innovations Association FRUCT (Moscow, Russia, 2019), 300–306

[4] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012

[5] Carlet C., “Vectorial Boolean functions for cryptography”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Encyclopedia of Mathematics and its Applications, 134, Cambridge University Press, N.Y., 2010, 398–472

[6] Pankov K. N., “Otsenki skorosti skhodimosti v predelnykh teoremakh dlya sovmestnykh raspredelenii chasti kharakteristik sluchainykh dvoichnykh otobrazhenii”, Prikladnaya diskretnaya matematika, 2012, no. 4, 14–30

[7] Sachkov V. N., Kurs kombinatornogo analiza, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2013, 336 pp.

[8] Slovar kriptograficheskikh terminov, MTsNMO, M., 2016, 94 pp.

[9] Denisov O. V., “Lokalnaya predelnaya teorema dlya raspredeleniya chasti spektra sluchainoi dvoichnoi funktsii”, Diskretnaya matematika, 2000, no. 1, 82–95 | DOI

[10] Pankov K. N., “Utochnennye asimptoticheskie otsenki dlya chisla $(n,m,k)$-ustoichivykh dvoichnykh otobrazhenii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 46–49

[11] Pankov K. N., “Utochnennye asimptoticheskie otsenki dlya chisla korrelyatsionno-immunnykh dvoichnykh funktsii i otobrazhenii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 49–52

[12] Canfield E. R., Gao Z., Greenhill C., et al., “Asymptotic enumeration of correlation-immune Boolean functions”, Cryptography and Communications, 2010, no. 1, 111–126 | DOI | MR | Zbl

[13] Pankov K. N., “Asimptoticheskie otsenki dlya chisel dvoichnykh otobrazhenii s zadannymi kriptograficheskimi svoistvami”, Matematicheskie voprosy kriptografii, 2014, no. 4, 73–97 | DOI

[14] Pankov K. N., “Uluchshennye asimptoticheskie otsenki dlya chisla korrelyatsionno-immunnykh i $k$-elastichnykh dvoichnykh vektor-funktsii”, Diskretnaya matematika, 2018, no. 2, 73–98 | DOI

[15] Denisov O. V., “Asimptoticheskaya formula dlya chisla korrelyatsionno-immunnykh poryadka $k$ bulevykh funktsii”, Diskretnaya matematika, 1991, no. 2, 25–46