Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2019_12_a18, author = {K. N. Pankov}, title = {Recursion {Formulas} for the number of $(n, m, k)$-resilient and correlation-immune {Boolean} mappings}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {62--66}, publisher = {mathdoc}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a18/} }
TY - JOUR AU - K. N. Pankov TI - Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 62 EP - 66 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a18/ LA - ru ID - PDMA_2019_12_a18 ER -
K. N. Pankov. Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 62-66. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a18/
[1] MR 26.4.001-2018 «Terminy i opredeleniya v oblasti tekhnologii tsepnoi zapisi dannykh (blokchein) i raspredelennykh reestrov», https://tc26.ru/standarts/metodicheskie-rekomendatsii/
[2] Michels D., Here's how GDPR and the blockchain can coexist, https://thenextweb.com/syndication/2018/07/26/gdpr-blockchain-cryptocurrency/
[3] Pankov K., “Enumeration of Boolean mapping with given cryptographic properties for personal data protection in blockchain data storage”, Proc. 24th Conf. of Open Innovations Association FRUCT (Moscow, Russia, 2019), 300–306
[4] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012
[5] Carlet C., “Vectorial Boolean functions for cryptography”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Encyclopedia of Mathematics and its Applications, 134, Cambridge University Press, N.Y., 2010, 398–472
[6] Pankov K. N., “Otsenki skorosti skhodimosti v predelnykh teoremakh dlya sovmestnykh raspredelenii chasti kharakteristik sluchainykh dvoichnykh otobrazhenii”, Prikladnaya diskretnaya matematika, 2012, no. 4, 14–30
[7] Sachkov V. N., Kurs kombinatornogo analiza, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2013, 336 pp.
[8] Slovar kriptograficheskikh terminov, MTsNMO, M., 2016, 94 pp.
[9] Denisov O. V., “Lokalnaya predelnaya teorema dlya raspredeleniya chasti spektra sluchainoi dvoichnoi funktsii”, Diskretnaya matematika, 2000, no. 1, 82–95 | DOI
[10] Pankov K. N., “Utochnennye asimptoticheskie otsenki dlya chisla $(n,m,k)$-ustoichivykh dvoichnykh otobrazhenii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 46–49
[11] Pankov K. N., “Utochnennye asimptoticheskie otsenki dlya chisla korrelyatsionno-immunnykh dvoichnykh funktsii i otobrazhenii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 49–52
[12] Canfield E. R., Gao Z., Greenhill C., et al., “Asymptotic enumeration of correlation-immune Boolean functions”, Cryptography and Communications, 2010, no. 1, 111–126 | DOI | MR | Zbl
[13] Pankov K. N., “Asimptoticheskie otsenki dlya chisel dvoichnykh otobrazhenii s zadannymi kriptograficheskimi svoistvami”, Matematicheskie voprosy kriptografii, 2014, no. 4, 73–97 | DOI
[14] Pankov K. N., “Uluchshennye asimptoticheskie otsenki dlya chisla korrelyatsionno-immunnykh i $k$-elastichnykh dvoichnykh vektor-funktsii”, Diskretnaya matematika, 2018, no. 2, 73–98 | DOI
[15] Denisov O. V., “Asimptoticheskaya formula dlya chisla korrelyatsionno-immunnykh poryadka $k$ bulevykh funktsii”, Diskretnaya matematika, 1991, no. 2, 25–46