Isometric mappings of the set of all Boolean functions into itself which preserve self-duality and the Rayleigh quotient
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 55-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study isometric mappings of the set of all Boolean functions in $n$ variables into itself which preserve self-duality and the Rayleigh quotient of Boolean function and generalize known results. It is proved that isometric mapping preserves self-duality if and only if it preserves anti-self-duality. The complete characterization of these mappings is obtained. Based on this result, the set of isometric mappings which preserve the Rayleigh quotient of a Boolean function is described. As a corollary, all isometric mappings which preserve bentness and the Hamming distance between bent function and its dual are given.
Keywords: Boolean function, isometric mapping, self-dual bent function, Rayleigh quotient.
@article{PDMA_2019_12_a15,
     author = {A. V. Kutsenko},
     title = {Isometric mappings of the set of all {Boolean} functions into itself which preserve self-duality and the {Rayleigh} quotient},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {55--58},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a15/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - Isometric mappings of the set of all Boolean functions into itself which preserve self-duality and the Rayleigh quotient
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 55
EP  - 58
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a15/
LA  - ru
ID  - PDMA_2019_12_a15
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T Isometric mappings of the set of all Boolean functions into itself which preserve self-duality and the Rayleigh quotient
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 55-58
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a15/
%G ru
%F PDMA_2019_12_a15
A. V. Kutsenko. Isometric mappings of the set of all Boolean functions into itself which preserve self-duality and the Rayleigh quotient. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 55-58. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a15/

[1] Janusz G. J., “Parametrization of self-dual codes by orthogonal matrices”, Finite Fields Appl., 13:3 (2007), 450–491 | DOI | MR | Zbl

[2] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[3] Hou X.-D., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63:2 (2012), 183–198 | DOI | MR | Zbl

[4] Carlet C., Danielson L. E., Parker M. G., Solé P., “Self dual bent functions”, Int. J. Inform. Coding Theory, 2010, no. 1, 384–399 | DOI | MR | Zbl

[5] Feulner T., Sok L., Solé P., Wassermann A., “Towards the classification of self-dual bent functions in eight variables”, Des. Codes Cryptogr., 68:1 (2013), 395–406 | DOI | MR | Zbl

[6] Kutsenko A. V., “Spektr rasstoyanii Khemminga mezhdu samodualnymi bent-funktsiyami iz klassa Meiorana–MakFarlanda”, Diskretnyi analiz i issledovanie operatsii, 25:1 (2018), 98–119 | MR | Zbl

[7] Danielsen L. E., Parker M. G., Solé P., “The Rayleigh quotient of bent functions”, LNCS, 5921, 2009, 418–432 | MR | Zbl

[8] Markov A. A., “O preobrazovaniyakh, ne rasprostranyayuschikh iskazheniya”, Izbrannye trudy, v. II, Teoriya algorifmov i konstruktivnaya matematika, matematicheskaya logika, informatika i smezhnye voprosy, MTsNMO, M., 2003, 70–93

[9] Tokareva N. N., “The group of automorphisms of the set of bent functions”, Discr. Math. Appl., 20:5 (2010), 655–664 | MR | Zbl