About the cubic part of the algebraic normal form of arbitrary bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 53-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Maximally nonlinear Boolean functions in $n$ variables, where $n$ is even, are called bent functions. The algebraic normal form (ANF) is one of the most useful ways for representing Boolean functions. What can we say about ANF of bent functions? Is it true that linear, quadratic, cubic, etc. parts of bent functions can be arbitrary? Cases with linear and quadratic parts were studied previously. In this paper, we prove that cubic part of ANF of a bent function can not be arbitrary if $n=6, 8$.
Keywords: Boolean function, bent function, linear function, quadratic function, cubic function, homogeneous function.
@article{PDMA_2019_12_a14,
     author = {T. A. Kuzmina},
     title = {About the cubic part of the algebraic normal form of arbitrary bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {53--55},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a14/}
}
TY  - JOUR
AU  - T. A. Kuzmina
TI  - About the cubic part of the algebraic normal form of arbitrary bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 53
EP  - 55
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a14/
LA  - ru
ID  - PDMA_2019_12_a14
ER  - 
%0 Journal Article
%A T. A. Kuzmina
%T About the cubic part of the algebraic normal form of arbitrary bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 53-55
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a14/
%G ru
%F PDMA_2019_12_a14
T. A. Kuzmina. About the cubic part of the algebraic normal form of arbitrary bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 53-55. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a14/

[1] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press. Elsevier, 2015 | MR | Zbl

[2] Tokareva N., Algebraic Normal Form of a Bent Function: Properties and Restrictions, IACR Cryptology Archive, https://eprint.iacr.org/2018/1160

[3] Cheremushkin A. V., “Metody affinnoi i lineinoi klassifikatsii bulevykh funktsii”, Trudy po diskretnoi matematike, v. 4, Fizmatlit, M., 2001, 273–314

[4] Langevin P., Classification of Boolean Quartics Forms in Eight Variables, http://langevin.univ-tln.fr/project/quartics/quartics.html