Mixing properties for some classes of permutations on $\mathbb{F}_2^n$
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 47-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class $\mathcal{F}_{n,k}$ of permutations on $\mathbb{F}_2^n$ with coordinate functions essentially depending on exactly $k$ variables, $k$, we consider two subclasses $S_{n,k}$ and $P_{n,k}$. The method for constructing a function $F(x_1,\ldots,x_n)=(f_1,\ldots,f_n)\in S_{n,k}$ starts from some function $G(x_1,\ldots,x_k)=(g_1,\ldots, g_k)\in \mathcal{F}_{k,k}$. Then we set $f_i(x_1,\ldots,x_n)=g_i(x_1,\ldots,x_k)$ for $i=1,\ldots,k$ and $f_i(x_1,\ldots,x_n)=x_i\oplus h_i(x_1,\ldots,x_{i-1})$ for $i=k+1,\ldots,n$, where $h_i$ is any function essentially depending on exactly $k-1$ variables from $x_1,\ldots,x_{i-1}$. The method for constructing a function $F\in P_{n,k}$ is used in the case when $k|n$, i.e. $n=sk$ for some $s\in\mathbb{N}$. We construct $s$ functions $G_1,\ldots,G_s\in\mathcal{ F}_{k,k}$, $G_i=\left(g_1^{(i)},\ldots,g_k^{(i)}\right)$, $i=1,\ldots,s$, and set $f_{tk+i}(x_1,\ldots,x_n)=g_i^{(t+1)}(x_{tk+1},\ldots,x_{(t+1)k})$, $t=0,\ldots,s-1$, $i=1,\ldots,k$. Mixing properties of such function are discussed, an algorithm for calculating elementary exponents is given.
Keywords: essential dependence of a function on a variable, mixing properties of the function, elementary exponent.
@article{PDMA_2019_12_a12,
     author = {L. A. Karpova and I. A. Pankratova},
     title = {Mixing properties for some classes of permutations on $\mathbb{F}_2^n$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {47--50},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a12/}
}
TY  - JOUR
AU  - L. A. Karpova
AU  - I. A. Pankratova
TI  - Mixing properties for some classes of permutations on $\mathbb{F}_2^n$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 47
EP  - 50
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a12/
LA  - ru
ID  - PDMA_2019_12_a12
ER  - 
%0 Journal Article
%A L. A. Karpova
%A I. A. Pankratova
%T Mixing properties for some classes of permutations on $\mathbb{F}_2^n$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 47-50
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a12/
%G ru
%F PDMA_2019_12_a12
L. A. Karpova; I. A. Pankratova. Mixing properties for some classes of permutations on $\mathbb{F}_2^n$. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 47-50. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a12/

[1] Agibalov G. P., “Substitution block ciphers with functional keys”, Prikladnaya diskretnaya matematika, 2017, no. 38, 57–65 | MR

[2] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010, 424 pp.

[3] Fomichev V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 101–112

[4] Fomichev V. M., “O kharakteristikakh lokalno primitivnykh orgrafov i matrits”, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 96–99

[5] Pankratova I. A., “Ob obratimosti vektornykh bulevykh funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 35–37

[6] Pankratova I. A., “Construction of invertible vectorial Boolean functions with coordinates depending on given number of variables”, Materialy Mezhdunar. nauch. kongressa po informatike: Informatsionnye sistemy i tekhnologii (Respublika Belarus, Minsk, 24–27 okt. 2016), BGU, Minsk, 2016, 519–521

[7] Kyazhin S. N., Fomichev V. M., “Lokalnaya primitivnost grafov i neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2014, no. 3, 68–80