Minimal representative set for a system of frequency classes of underdetermined words
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 41-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a finite set $M$ and a system $\mathcal{T}$ of some non-empty subsets $T\subseteq M$ be given. Associated with the sets $M$ and $\mathcal{T}$ are the alphabets $A_0=\{a_i,\,i\in M\}$ of basic symbols and $A=\{a_T,\; T\in\mathcal{T}\}$ of underdetermined symbols. The set of all words of length $l$ in the alphabet $A$, in which each symbol $a_T$ is present $r_T$ times, $\sum\limits_{T\in\mathcal{T}} r_T=l$, is called frequency class and denoted by $\mathcal{K}_l(\mathbf{r})$ where $\mathbf{r}=(r_T,\,T\in\mathcal{T})$. The specification of the word $v$ in the alphabet $A$ is any word obtained from $v$ by replacing each symbol $a_T$ with some $a_i$, $i\in T$. The specification of the set $V$ of words in the alphabet $A$ is any set of words in the alphabet $A_0$, containing for each word $v\in V$ some specification of it. The class $\mathcal{K}_{l_1}(\mathbf{r}_1)$ is considered to be more representative than the class $\mathcal{K}_{l_2}(\mathbf{r}_2)$, if $l_1\ge l_2$ and, whatever the specification of the class $\mathcal{ K}_{l_1}(\mathbf{r}_1)$, the set of beginnings of the length $l_2$ of all words from the specification forms some specification for the class $\mathcal{K}_{l_2}(\mathbf{r}_2)$. Let $\mathfrak K$ be some system of frequency classes. A subsystem of $\mathfrak K$ is called a representative set of the system $\mathfrak K$ if, for any $\mathcal{K}_l(\mathbf{r})\in\mathfrak K$, the subsystem contains a class that is more representative than $\mathcal{K}_l (\mathbf{r})$. The paper presents a method for finding the smallest representative set for an arbitrary system of frequency classes. This setting arises in the problems of underdetermined data compression and of underdetermined functions implementation.
Keywords: underdetermined data, specification, frequency class, representative set.
@article{PDMA_2019_12_a10,
     author = {L. A. Sholomov},
     title = {Minimal representative set for a system of frequency classes of underdetermined words},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {41--44},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a10/}
}
TY  - JOUR
AU  - L. A. Sholomov
TI  - Minimal representative set for a system of frequency classes of underdetermined words
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 41
EP  - 44
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a10/
LA  - ru
ID  - PDMA_2019_12_a10
ER  - 
%0 Journal Article
%A L. A. Sholomov
%T Minimal representative set for a system of frequency classes of underdetermined words
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 41-44
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a10/
%G ru
%F PDMA_2019_12_a10
L. A. Sholomov. Minimal representative set for a system of frequency classes of underdetermined words. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 41-44. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a10/

[1] Sholomov L. A., “Elementy teorii nedoopredelennoi informatsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2009, no. 2, 18–42

[2] Sholomov L. A., “O funktsionalakh, kharakterizuyuschikh slozhnost sistem nedoopredelennykh bulevykh funktsii”, Problemy kibernetiki, 19, Fizmatlit, M., 1967, 123–139

[3] Nechiporuk E. I., “O slozhnosti ventilnykh skhem, realizuyuschikh bulevskie matritsy s neopredelennymi elementami”, DAN SSSR, 163:1 (1965), 40–42 | Zbl

[4] Adelson-Velskii G. M., Dinits E. A., Karzanov A. V., Potokovye algoritmy, Nauka, M., 1975 | MR