Mots-clés : Frobenius endomorphism, $l$-torsion.
@article{PDMA_2019_12_a1,
author = {N. S. Kolesnikov and S. A. Novoselov},
title = {On the order of the {Frobenius} endomorphism action on $l$-torsion subgroup of {Abelian} surfaces},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {11--12},
year = {2019},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a1/}
}
TY - JOUR AU - N. S. Kolesnikov AU - S. A. Novoselov TI - On the order of the Frobenius endomorphism action on $l$-torsion subgroup of Abelian surfaces JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 11 EP - 12 IS - 12 UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a1/ LA - ru ID - PDMA_2019_12_a1 ER -
%0 Journal Article %A N. S. Kolesnikov %A S. A. Novoselov %T On the order of the Frobenius endomorphism action on $l$-torsion subgroup of Abelian surfaces %J Prikladnaya Diskretnaya Matematika. Supplement %D 2019 %P 11-12 %N 12 %U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a1/ %G ru %F PDMA_2019_12_a1
N. S. Kolesnikov; S. A. Novoselov. On the order of the Frobenius endomorphism action on $l$-torsion subgroup of Abelian surfaces. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 11-12. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a1/
[1] Schoof R., “Counting points on elliptic curves over finite fields”, J. Theor. Nombres Bordeaux, 7:1 (1995), 219–254 | DOI | MR | Zbl
[2] Gaudry P., Schost É., “Genus 2 point counting over prime fields”, J. Symb. Comput., 47:4 (2012), 368–400 | DOI | MR | Zbl
[3] Pila J., “Frobenius maps of abelian varieties and finding roots of unity in finite fields”, Mathematics of Computation, 55:192 (1990), 745–763 | DOI | MR | Zbl
[4] Novoselov S. A., Kolesnikov N. S., “On expected order of Frobenius action on $l$-torsion of abelian surfaces”, NuTMiC, 2019 (to appear) | Zbl
[5] Diaconis P., Erdös P., On the distribution of the greatest common divisor, Lecture Notes — Monograph Series, 45, Institute of Mathematical Statistics, 2004, 56–61 | DOI | MR | Zbl