On the blocking of two-dimensional affine varieties
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 7-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the problem of blocking families of subsets and proposes a construction for expanding the blocking sets of a family of two-dimensional affine manifolds in the space of bit strings when its dimension $n$ increases. Examples are given and the cardinality of the complements of the blocking sets of this family of varieties are calculated for high odd dimension. The main construction of the complement of the blocking set for $n=2m+1$ is its construction in the form of a set of elements in the form $(x,y,z)$, where $z$ is a bit, $y=x^3$ for the bit string $x$ from the complement of the blocking set in the field $\mathrm{GF}(2^m)$. The construction is applied to solve the “A secret sharing” problem of the NSUCRYPTO Olympiad not only for even, but also for an odd dimension of the space.
Keywords: affine manifolds, blocking set
Mots-clés : NSUCRYPTO.
@article{PDMA_2019_12_a0,
     author = {K. L. Geut and S. S. Titov},
     title = {On the blocking of two-dimensional affine varieties},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {7--10},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a0/}
}
TY  - JOUR
AU  - K. L. Geut
AU  - S. S. Titov
TI  - On the blocking of two-dimensional affine varieties
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 7
EP  - 10
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a0/
LA  - ru
ID  - PDMA_2019_12_a0
ER  - 
%0 Journal Article
%A K. L. Geut
%A S. S. Titov
%T On the blocking of two-dimensional affine varieties
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 7-10
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a0/
%G ru
%F PDMA_2019_12_a0
K. L. Geut; S. S. Titov. On the blocking of two-dimensional affine varieties. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 7-10. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a0/

[1] Sait olimpiady NSUCRYPTO, http://nsucrypto.nsu.ru/

[2] Tokareva N., Gorodilova A., Agievich S., et al., “Mathematical methods in solutions of the problems from the Third International Students' Olympiad in Cryptography”, Prikladnaya diskretnaya matematika, 2018, no. 40, 34–58 | MR

[3] Geut K. L., Kirienko K. A., Sadkov P. O. i dr., “O yavnykh konstruktsiyakh dlya resheniya zadachi “A secret sharing””, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 68–70

[4] Szonyi T., “Blocking sets in desarguesian affine and projective planes”, Finite Fields and their Appl., 3:3 (1997), 187–202 | DOI | MR | Zbl

[5] Polverino O., “Linear sets in finite projective spaces”, Discrete Mathematics, 310:22 (2010), 3096–3107 | DOI | MR | Zbl

[6] Zubov A.Yu., Sovershennye shifry, Gelios ARV, M., 2003

[7] Bolotova E. A., Konovalova S. S., Titov S. S., “Svoistva reshetok razgranicheniya dostupa, sovershennye shifry i skhemy razdeleniya sekreta”, Problemy bezopasnosti i protivodeistviya terrorizmu, Materialy IV Mezhdunar. nauch. konf., v. 2, MTsNMO, M., 2009, 71–86

[8] Parvatov N. G., “Sovershennye skhemy razdeleniya sekreta”, Prikladnaya diskretnaya matematika, 2008, no. 2(2), 50–57

[9] Bashurov V. V., Filimonenkova T. I., Matematicheskie modeli bezopasnosti, Nauka, Novosibirsk, 2009, 87 pp.

[10] Lidl R., Niderraiter G., Konechnye polya, v. 1–2, Kniga po Trebovaniyu, M., 2013, 812 pp.

[11] Gorodilova A. A., “Ot kriptoanaliza schifra k kriptograficheskomu svoistvu bulevoi funktsii”, Prikladnaya diskretnaya matematika, 2016, no. 3(33), 16–44 | MR