Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 30-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we investigate hyperelliptic curves of type shown in the title over the finite field $\mathbb F_q$, $q=p^n$, $p>2$. For the case of $g=3$ or $4$, $p\nmid4g$ and $b$ is a $4g$-root, we provide efficient methods to compute the number of points in the Jacobian of the curve.
Keywords: hyperelliptic curves, point counting.
Mots-clés : Cartier–Manin matrix, Legendre polynomials
@article{PDMA_2018_11_a8,
     author = {S. A. Novoselov},
     title = {Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {30--33},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a8/}
}
TY  - JOUR
AU  - S. A. Novoselov
TI  - Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 30
EP  - 33
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a8/
LA  - en
ID  - PDMA_2018_11_a8
ER  - 
%0 Journal Article
%A S. A. Novoselov
%T Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 30-33
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a8/
%G en
%F PDMA_2018_11_a8
S. A. Novoselov. Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 30-33. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a8/

[1] Miller L., “Curves with invertible Hasse–Witt-matrix”, Mathematische Annalen, 197:2 (1972), 123–127 | DOI | MR | Zbl

[2] Novoselov S. A., “Hyperelliptic curves, Cartier–Manin matrices and Legendre polynomials”, Prikladnaya Diskretnaya Matematika, 2017, no. 37, 20–31 | DOI | MR

[3] Leprevost F., Morain F., “Revetements de courbes elliptiques a multiplication complexe par des courbes hyperelliptiques et sommes de caracteres”, J. Number Theory, 64:2 (1997), 165–182 | DOI | MR | Zbl

[4] Satoh T., “Generating genus two hyperelliptic curves over large characteristic finite fields”, LNCS, 5479, 2009, 536–553 | MR | Zbl

[5] Guillevic A., Vergnaud D., “Genus 2 hyperelliptic curve families with explicit jacobian order evaluation and pairing-friendly constructions”, LNCS, 7708, 2012, 234–253 | MR

[6] Paulhus J. R., Elliptic factors in Jacobians of low genus curves, Phd Thesis, 2007 | MR

[7] Paulhus J. R., “Decomposing Jacobians of curves with extra automorphisms”, Acta Arith., 132:3 (2008), 231–244 | DOI | MR | Zbl

[8] Cohen H., Frey G, et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography, CRC Press, 2005

[9] Sun Z. H., “Congruences concerning Legendre polynomials. II”, J. Number Theory, 133:6 (2013), 1950–1976 | DOI | MR | Zbl

[10] Sun Z. H., “Congruences involving $\binom{2k}k^2\binom{3k}k$”, J. Number Theory, 133:5 (2013), 1572–1595 | DOI | MR | Zbl

[11] Sun Z. H., “Legendre polynomials and supercongruences”, Acta Arith., 159:2 (2013), 169–200 | DOI | MR | Zbl

[12] Gaudry P., Schost E., “Genus 2 point counting over prime fields”, J. Symbolic Comput., 47:4 (2012), 368–400 | DOI | MR | Zbl