Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 30-33

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we investigate hyperelliptic curves of type shown in the title over the finite field $\mathbb F_q$, $q=p^n$, $p>2$. For the case of $g=3$ or $4$, $p\nmid4g$ and $b$ is a $4g$-root, we provide efficient methods to compute the number of points in the Jacobian of the curve.
Keywords: hyperelliptic curves, point counting.
Mots-clés : Cartier–Manin matrix, Legendre polynomials
@article{PDMA_2018_11_a8,
     author = {S. A. Novoselov},
     title = {Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {30--33},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a8/}
}
TY  - JOUR
AU  - S. A. Novoselov
TI  - Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 30
EP  - 33
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a8/
LA  - en
ID  - PDMA_2018_11_a8
ER  - 
%0 Journal Article
%A S. A. Novoselov
%T Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 30-33
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a8/
%G en
%F PDMA_2018_11_a8
S. A. Novoselov. Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 30-33. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a8/