Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2018_11_a7, author = {P. Kirchner}, title = {NFS factorization: new hopes}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {25--30}, publisher = {mathdoc}, number = {11}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a7/} }
P. Kirchner. NFS factorization: new hopes. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 25-30. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a7/
[1] Buhler J. P., Lenstra H. W., Pomerance C., “Factoring integers with the number field sieve”, The Development of the Number Field Sieve, Springer, 1993, 50–94 | DOI | MR | Zbl
[2] Coppersmith D., “Modifications to the number field sieve”, J. Cryptology, 6:3 (1993), 169–180 | DOI | MR | Zbl
[3] Seysen M., “A probabilistic factorization algorithm with quadratic forms of negative discriminant”, Mathematics of Computation, 48:178 (1987), 757–780 | DOI | MR | Zbl
[4] Lenstra H. W., Pomerance C., “A rigorous time bound for factoring integers”, J. Amer. Math. Soc., 5:3 (1992), 483–516 | DOI | MR | Zbl
[5] Cohen H., A Course in Computational Algebraic Number Theory, Springer Science Business Media, 2013 | MR
[6] Lemmermeyer F., The Ambiguous Class Number Formula Revisited, 2013, arXiv: 1309.1071 | MR
[7] Kirchner P., Algorithms on Ideal over Complex Multiplication Order, 2016, arXiv: 1602.09037
[8] Schoof R., Computing Arakelov class groups, 2008, arXiv: 0801.3835 | MR
[9] Adleman L. M., “Factoring numbers using singular integers”, Proc. 23th Ann. ACM Symp. Theory of Computing, ACM, 1991, 64–71
[10] Pollard J. M., “Theorems on factorization and primality testing”, Math. Proc. of the Cambridge Philosophical Soc., 76:3 (1974), 521–528 | DOI | MR | Zbl
[11] Williams H. C., “A $p+1$ method of factoring”, Math. Computation, 39:159 (1982), 225–234 | MR | Zbl
[12] Bach E., Shallit J., “Factoring with cyclotomic polynomials”, Math. Computation, 52:185 (1989), 201–219 | DOI | MR | Zbl
[13] Cox D. A., Primes of the Form $x^2+ ny^2$: Fermat, Class Field Theory, and Complex Multiplication, Pure and Appl. Math., 34, John Wiley Sons, 2011 | MR
[14] Klüners J., Pauli S., “Computing residue class rings and Picard groups of orders”, J. Algebra, 292:1 (2005), 47–64 | DOI | MR | Zbl
[15] Buchmann J. A., Lenstra H. W., “Approximating rings of integers in number fields”, J. de Théorie des Nombres de Bordeaux, 6:2 (1994), 221–260 | MR | Zbl