About the maximum number of vertices in primitive regular graphs with exponent~3
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 112-114
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper presents some results about the maximum number of vertices in primitive regular graphs with exponent 3. A computational experiment was conducted. We have found the numbers of primitive regular graphs with degree $p\le9$, number of vertices $n\le16$ and exponent 3 for each pair $(n,p)$. We have found the upper bound $n_p$ for the maximum number of vertices in primitive regular graphs with exponent 3 and degree $p$: $n_p\le3(p-1)+2(p-2)(p-1)+(p-2)^2(p+1)$. Also, we have found the exact value of the maximum number of vertices in primitive regular graphs with degree 3 and exponent 3, namely, $n_3=12$.
Keywords:
primitive graph, regular graph, the maximum number of vertices.
@article{PDMA_2018_11_a34,
author = {I. V. Los and M. B. Abrosimov},
title = {About the maximum number of vertices in primitive regular graphs with exponent~3},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {112--114},
publisher = {mathdoc},
number = {11},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a34/}
}
TY - JOUR AU - I. V. Los AU - M. B. Abrosimov TI - About the maximum number of vertices in primitive regular graphs with exponent~3 JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2018 SP - 112 EP - 114 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a34/ LA - ru ID - PDMA_2018_11_a34 ER -
I. V. Los; M. B. Abrosimov. About the maximum number of vertices in primitive regular graphs with exponent~3. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 112-114. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a34/