Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2018_11_a33, author = {A. A. Lobov and M. B. Abrosimov}, title = {About minimal $1$-edge extension of hypercube}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {109--111}, publisher = {mathdoc}, number = {11}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a33/} }
A. A. Lobov; M. B. Abrosimov. About minimal $1$-edge extension of hypercube. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 109-111. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a33/
[1] Harary F., Hayes J. P., Wu H.-J., “A survey of the theory of hypercube graphs”, Computers Math. Appl., 15 (1988), 277–289 | DOI | MR | Zbl
[2] Padua D. A., Encyclopedia of Parallel Computing, Springer, N.Y., 2011 | MR | Zbl
[3] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.
[4] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C-25:9 (1976), 875–884 | DOI | MR
[5] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[6] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl
[7] Meringer M., “Fast generation of regular graphs and construction of cages”, J. Graph Theory, 30 (1999), 137–146 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl