On codes used in biometrical cryptosystems
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 105-106
Cet article a éte moissonné depuis la source Math-Net.Ru
Problems of using error-correcting codes in biometric cryptosystems are studied. Several constructions of codes with parameters better than parameters of the code from the original biometric cryptosystem of F. Hao, R. Anderson, and J. Daugman (2006) are proposed. A new upper bound for the size of a binary code based on its possibility to correct not more than $t$ errors with probability $1$ and $t+1$ errors with a probability $p$ is proposed. For the cases $t=0,1,2$ we study, it is possible to reach this bound.
Keywords:
biometric cryptosystem, linear code, upper bound.
@article{PDMA_2018_11_a31,
author = {A. A. Belousova and V. I. Nobeleva and N. N. Tokareva},
title = {On codes used in biometrical cryptosystems},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {105--106},
year = {2018},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a31/}
}
A. A. Belousova; V. I. Nobeleva; N. N. Tokareva. On codes used in biometrical cryptosystems. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 105-106. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a31/
[1] Hao F., Anderson R., Daugman J., “Combining Crypto with biometrics effectively”, IEEE Trans. Comput., 55:9 (2006), 1081–1088 | DOI