On nonabelian key addition groups and markovian block ciphers
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 79-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, $(X,*)$ is an arbitrary key addition group, $\mathbf W=\{W_0,\dots,W_{r-1}\}$ is a partition of $X$, $S(X)$ is the symmetric group on $X$. In 1991, X. Lai, J. L. Massey and S. Murphy introduced markovian block ciphers. We investigate a markovian block cipher $\mathrm C_l(*,b)$ where $l$ is the round number, $b$ is a permutation on $X$, $g\colon X^2\to X$ is the round function defined by $g\colon (x,k)\mapsto b(x*k)$. In the previous paper, we introduced $*_\mathbf W$-markovian block ciphers, which are a generalization of markovian ciphers, and $*_\mathbf W$-markovian transformations. The block cipher $\mathrm C_l(*,b)$ is $*_\mathbf W$-markovian iff the permutation $b$ is $*_\mathbf W$-markovian. We have proved that if $g$ preserves $\mathbf W$, then $G=\langle b,X^*\rangle$ is an imprimitive group and $\mathbf W$ is an imprimitivity system where $X^*$ is the right permutation representation of $(X,*)$. Moreover, if $G$ is imprimitive, then there exists a canonical homomorphism $\varphi_\mathbf W\colon G\to S(\{0,\dots,r-1\})$. We have proved that in the case $(W_0,*)\triangleleft(X,*)$, the cipher $\mathrm C_l(*,b)$ is $*_\mathbf W$-markovian iff there exists a homomorphism $\varphi_\mathbf W$. For cryptographic applications, we are interested in groups of order $2^m$. In this paper, we consider all four nonabelian groups of order $2^m$ having a cyclic subgroup of index 2. These four groups include a dihedral group and a generalized quaternion group. For all four groups, we have described $*_\mathbf W$-markovian permutations such that $\mathbf W$ is the right coset space ($X\colon W_0=\mathbf W$), but $(W_0,*)\ntriangleleft(X,*)$.
Keywords: markovian cipher, dihedral group, generalized quaternion group, difference distribution table
Mots-clés : homomorphism, imprimitive group.
@article{PDMA_2018_11_a24,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {On nonabelian key addition groups and markovian block ciphers},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {79--81},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a24/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - On nonabelian key addition groups and markovian block ciphers
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 79
EP  - 81
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a24/
LA  - ru
ID  - PDMA_2018_11_a24
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T On nonabelian key addition groups and markovian block ciphers
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 79-81
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a24/
%G ru
%F PDMA_2018_11_a24
B. A. Pogorelov; M. A. Pudovkina. On nonabelian key addition groups and markovian block ciphers. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 79-81. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a24/

[1] Lai X., Massey J. L., Murphy S., “Markov ciphers and differential cryptanalysis”, EUROCRYPT 1991, LNCS, 547, 1991, 17–38 | MR | Zbl

[2] Pogorelov B. A., Pudovkina M. A., “Razbieniya na bigrammakh i markovost algoritmov blochnogo shifrovaniya”, Matematicheskie voprosy kriptografii, 8:1 (2017), 107–142 | DOI | MR

[3] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.