Experimental research of cryptographic properties of some lightweight algorithms
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 68-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The approaches to the construction of block algorithms for lightweight cryptography are systematized, some lightweight algorithms based on Feistel networks and SP-networks are studied and their mixing and nonlinear properties are estimated. The concepts of the “exponent of strong nonlinearity” (the least number of rounds at which each coordinate function of the output block is nonlinear) and the “exponent of perfection” (the least number of rounds at which each bit of the output block essentially depends on all bits of the input block) are defined. For the PRESENT, MIDORY, SKINNY, CLEFIA, and LILLIPUT algorithms, the exact values of the exponents of the matrices of essential dependence constructed for the round functions (respectively 3, 3, 6, 5, 5), as well as the exponents of perfection (4, 3, 6, 5, 5) and exponents of strong nonlinearity (1, 1, 1, 2, 2) have been obtained. The proximity of the values for the exponents of the matrices to the values for the exponents of perfection shows the effectiveness of the application of the matrix-graph approach to the estimation of the mixing properties of cryptographic transformations. For each of these algorithms, it was experimentally established that, for 500 rounds, each coordinate function of the output block is nonlinear. This indicates the potential use of the algorithms in constructing a key schedule or lightweight hash functions.
Keywords: lightweight cryptography, Feistel network, SP-network, mixing matrix, exponent of matrix, exponent of strong nonlinearity, exponent of perfection.
@article{PDMA_2018_11_a20,
     author = {K. V. Maksimov and I. I. Khairullin},
     title = {Experimental research of cryptographic properties of some lightweight algorithms},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {68--71},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a20/}
}
TY  - JOUR
AU  - K. V. Maksimov
AU  - I. I. Khairullin
TI  - Experimental research of cryptographic properties of some lightweight algorithms
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 68
EP  - 71
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a20/
LA  - ru
ID  - PDMA_2018_11_a20
ER  - 
%0 Journal Article
%A K. V. Maksimov
%A I. I. Khairullin
%T Experimental research of cryptographic properties of some lightweight algorithms
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 68-71
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a20/
%G ru
%F PDMA_2018_11_a20
K. V. Maksimov; I. I. Khairullin. Experimental research of cryptographic properties of some lightweight algorithms. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 68-71. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a20/

[1] Zhukov A. E., “Legkovesnaya kriptografiya. Ch. 1”, Voprosy kiberbezopasnosti, 2015, no. 1, 26–43

[2] Bogdanov A., Knudsen L., Leander G., et al., “PRESENT: An ultra-lightweight block cipher”, CHES 2007, LNCS, 4727, 2007, 450–466 | Zbl

[3] Shirai T., Shibutani T., Akishita K., et al., “The 128-bit blockcipher CLEFIA”, FSE 2007, LNCS, 4593, 2007, 181–195 | Zbl

[4] Thierry P., Julien F., Marine M., Gaël T., “Extended generalized Feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput”, IEEE Trans. Computers, 65:7 (2015), 99

[5] Banik S., Bogdanov A., Isobe T., et al., “Midori: a block cipher for low energy”, ASIACRYPT 2015, LNCS, 9453, 2015, 411–436 | MR | Zbl

[6] Beierle C., Jean J., Kolbl S., et al., “The SKINNY family of block ciphers and its low-latency variant MANTIS”, CRYPTO 2016, LNCS, 9815, 2016, 123–153 | MR | Zbl

[7] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Ucheb. posobie, Dialog-MIFI, M., 2010

[8] Poschmann A., Lightweight Cryptography: Cryptographic Engineering for a Pervasive World, Ph. D. Thesis, Ruhr University Bochum, 2009

[9] Koreneva A. M., Martyshin V. N., “Eksperimentalnoe issledovanie eksponentov raundovykh peremeshivayuschikh matrits obobschënnykh setei Feistelya”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 48–51