Connection between homogeneous bent functions and intersection graphs
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 52-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Connection between intersection graphs and homogeneous bent functions are studied. Let $\Gamma_{(n,k)}$ be a graph in which the vertices correspond to $\binom nk$ unordered subsets of size $k$ of a set $\{1,\dots,n\}$. Two vertices of $\Gamma_{(n,k)}$ are joined by an edge whenever the corresponding $k$-sets intersect in a subset of size one. Those $n$ and $k$ for which the graph $\Gamma_{(n,k)}$ has cliques of size $k+1$ are chosen. It is conjectured that, for such $n$ and $k$, the cliques of size $k+1$ in $\Gamma_{(n,k)}$ are maximal. It is shown that the number of cliques of size $k+1$ in the graph $\Gamma_{(n, k)}$ with $n=(k+1)k/2$ is equal to $n!/(k+1)!$. There are homogeneous Boolean functions in $10$ and $28$ variables which are obtained by taking complements to the cliques of the maximal size in the graphs $\Gamma_{(10,4)}$ and $\Gamma_{(28,7)}$ and which aren't bent functions.
Keywords: intersection graphs, homogeneous bent functions.
@article{PDMA_2018_11_a15,
     author = {A. S. Shaporenko},
     title = {Connection between homogeneous bent functions and intersection graphs},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {52--53},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a15/}
}
TY  - JOUR
AU  - A. S. Shaporenko
TI  - Connection between homogeneous bent functions and intersection graphs
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 52
EP  - 53
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a15/
LA  - ru
ID  - PDMA_2018_11_a15
ER  - 
%0 Journal Article
%A A. S. Shaporenko
%T Connection between homogeneous bent functions and intersection graphs
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 52-53
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a15/
%G ru
%F PDMA_2018_11_a15
A. S. Shaporenko. Connection between homogeneous bent functions and intersection graphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 52-53. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a15/

[1] Charnes C., Rotteler M., Beth T., “Homogeneous bent functions, invariants, and designs”, Designs, Codes and Cryptography, 26 (2002), 139–154 | DOI | MR | Zbl

[2] Qu C., Seberry J., Pieprzyk J., “Homogeneous bent functions”, Discrete Appl. Math., 102:1–2 (2000), 133–139 | MR | Zbl